skip to main content

Search for: All records

Creators/Authors contains: "Wang, Peng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 30, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. Early identification of rotating machinery faults is crucial to avoid catastrophic failures upon installation. Contact-based vibration acquisition approaches are traditionally used for the purpose of machine health monitoring and end-of-line quality control. In complex working conditions, it can be difficult to perform an accurate accelerometer based vibration test. Acoustic signals (sound pressure and particle velocity) also contain important information about the operating state of mechanical equipment and can be used to detect different faults. A deep learning approach, namely one-dimensional Convolution Neural Networks (1D-CNN) can directly process raw time signals thereby eliminating the human dependance on fault feature extraction. An experimental research study is conducted to test the proposed 1D-CNN methodology on three different electric motor faults. The results from the study indicate that the fault detection performance from the new acoustic-based method is very effective and thus can be a good replacement to the conventional accelerometer-based methods for detection and diagnosis of mechanical faults in electric motors. 
    more » « less
    Free, publicly-accessible full text available May 25, 2024
  4. Free, publicly-accessible full text available May 1, 2024