skip to main content


Search for: All records

Creators/Authors contains: "Wang, Ruowen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Automated attachment of chemotherapeutic drugs to oligonucleotides through phosphoramidite chemistry and DNA synthesis has emerged as a powerful technology in constructing structure‐defined and payload‐tunable oligonucleotide–drug conjugates. In practice, however, in vivo delivery of these oligonucleotides remains a challenge. Inspired by the systemic transport of hydrophobic payloads by serum albumin in nature, we report the development of a lipid‐conjugated floxuridine homomeric oligonucleotide (LFU20) that “hitchhikes” with endogenous serum albumin for cancer chemotherapy. Upon intravenous injection, LFU20 immediately inserts into the hydrophobic cave of albumin to form an LFU20/albumin complex, which accumulates in the tumor by the enhanced permeability and retention (EPR) effect and internalizes into the lysosomes of cancer cells. After degradation, cytotoxic floxuridine monophosphate is released to inhibit cell proliferation.

     
    more » « less
  2. Abstract

    Automated attachment of chemotherapeutic drugs to oligonucleotides through phosphoramidite chemistry and DNA synthesis has emerged as a powerful technology in constructing structure‐defined and payload‐tunable oligonucleotide–drug conjugates. In practice, however, in vivo delivery of these oligonucleotides remains a challenge. Inspired by the systemic transport of hydrophobic payloads by serum albumin in nature, we report the development of a lipid‐conjugated floxuridine homomeric oligonucleotide (LFU20) that “hitchhikes” with endogenous serum albumin for cancer chemotherapy. Upon intravenous injection, LFU20 immediately inserts into the hydrophobic cave of albumin to form an LFU20/albumin complex, which accumulates in the tumor by the enhanced permeability and retention (EPR) effect and internalizes into the lysosomes of cancer cells. After degradation, cytotoxic floxuridine monophosphate is released to inhibit cell proliferation.

     
    more » « less