skip to main content


Search for: All records

Creators/Authors contains: "Wang, Shitan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using lead phthalocyanine (PbPc) as surface doping material on black phosphorous (BP) we observe enhanced photo-excited carriers in the PbPc/BP heterostructure. The interfacial energy level alignment is investigated with ultra violet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The heterojunction is type I with gap of BP nested in that of PbPc, facilitating confinement of electrons and holes in BP. Ultrafast time-resolved two-photon photoemission (TR-2PPE) spectroscopy is used to study the influence of PbPc on the photo excited unoccupied electronic states and the dynamics of the relaxation processes. Monolayer PbPc can greatly increase the pump excited hot electrons and the 2 photon emission of BP. The enhanced population in the intermediate states is attributed to the straddling of the band alignment which benefits the photo excited electrons in PbPc transferring to BP. Density functional theory calculations supported the interface dipole and charge redistribution. Our results provide a fundamental understanding of the excellent opto-electrical response of PbPc/BP interface of promising application in the high efficient photo detectors. 
    more » « less
  2. Abstract The interfacial modification effect of the molybdenum trioxide (MoO 3 ) buffer layer inserted between Al and black phosphorus (BP) was investigated with photoemission spectroscopy. The results show that MoO 3 buffer layer can effectively prevent the destruction of the outermost BP lattice by Al thermal deposition and change the interface electronic structure between Al and BP. At the MoO 3 /BP interface, there is an interface dipole pointing from MoO 3 to BP. During the metal deposition process, an interfacial chemical reaction between Al and MoO 3 was found. These observations would provide insight for fabricating high-performance BP-based devices. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), atomic force microscopy (AFM) and X-ray diffraction (XRD) were applied to investigate the electronic structure and molecular packing of C8-BTBT on HOPG with an ultrathin C 60 interlayer. It was found that C8-BTBT displays a Vollmer–Weber (V–W) growth mode on HOPG, with an ultrathin C 60 interlayer (0.7 nm). Compared to the uniform lying-down growth mode as directly grown on HOPG, the C8-BTBT molecules here adopt a lying-down orientation at low coverage with some small tilt angles because the π–π interaction between C8-BTBT and HOPG is partly disturbed by the C 60 interlayer, delivering a higher highest occupied molecular orbital (HOMO) in C8-BTBT. An interface dipole of 0.14 eV is observed due to electron transport from C8-BTBT to C 60 . The upward and downward band bending in C8-BTBT and C 60 , respectively, near the C8-BTBT/C 60 interface reduces the hole transport barrier at the interface, facilitating the hole injection from C 60 to C8-BTBT, while a large electron transfer barrier from C 60 to C8-BTBT is detected at this interface, which effectively limits electron injection from C 60 to C8-BTBT. The HOMO of C8-BTBT near the interface is largely lifted up by the C 60 insertion layer, which causes a p-doping effect and increases the hole mobility in C8-BTBT. Furthermore, owing to the lowest occupied molecular orbital (LUMO) of C 60 residing in the gap of C8-BTBT, charge transfer occurs between C 60 and the trap states in C8-BTBT to effectively passivate the trapping states. Our efforts aid a better understanding of the electron structure and film growth of anisotropic molecules and provide a useful strategy to improve the performance of C8-BTBT-based devices. 
    more » « less
  5. So, Franky ; Adachi, Chihaya ; Kim, Jang-Joo (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)