skip to main content

Search for: All records

Creators/Authors contains: "Wang, Siqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. Abstract The interplay between chirality and magnetism generates a distinct physical process, the magneto-chiral effect, which enables one to develop functionalities that cannot be achieved solely by any of the two. Such a process is universal with the breaking of parity-inversion and time-reversal symmetry simultaneously. However, the magneto-chiral effect observed so far is weak when the matter responds to photons, electrons, or phonons. Here we report the first observation of strong magneto-chiral response to excitons in a twisted bilayer tungsten disulfide with the amplitude of excitonic magneto-chiral (ExMCh) anisotropy reaches a value of ~4%. We further found the ExMCh anisotropymore »features with a spectral splitting of ~7 nm, precisely the full-width at half maximum of the excitonic chirality spectrum. Without an externally applied strong magnetic field, the observed ExMCh effect with a spontaneous magnetic moment from the ferromagnetic substrate of thulium iron garnet at room temperature is favorable for device applications. The unique ExMCh processes provide a new pathway to actively control magneto-chiral applications in photochemical reactions, asymmetric synthesis, and drug delivery.« less
    Free, publicly-accessible full text available December 1, 2022
  3. The condensation of half-light half-matter exciton polaritons in semiconductor optical cavities is a striking example of macroscopic quantum coherence in a solid-state platform. Quantum coherence is possible only when there are strong interactions between the exciton polaritons provided by their excitonic constituents. Rydberg excitons with high principal value exhibit strong dipole–dipole interactions in cold atoms. However, polaritons with the excitonic constituent that is an excited state, namely Rydberg exciton polaritons (REPs), have not yet been experimentally observed. Here, we observe the formation of REPs in a single crystal CsPbBr 3 perovskite cavity without any external fields. These polaritons exhibit strongmore »nonlinear behavior that leads to a coherent polariton condensate with a prominent blue shift. Furthermore, the REPs in CsPbBr 3 are highly anisotropic and have a large extinction ratio, arising from the perovskite’s orthorhombic crystal structure. Our observation not only sheds light on the importance of many-body physics in coherent polariton systems involving higher-order excited states, but also paves the way for exploring these coherent interactions for solid-state quantum optical information processing.« less