- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Tinghui (4)
-
Aminikhanghahi, Samaneh (2)
-
Cook, Diane J (2)
-
Cook, Diane J. (2)
-
Fischer, Thomas R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wang, Tinghui; Cook, Diane J (, IEEE Transactions on Emerging Topics in Computing)Activity recognizers are challenging to design for continuous, in-home settings. However, they are notoriously difficult to create when there is more than one resident in the home. Despite recent efforts, there remains a need for an algorithm that can estimate the number of residents in the house, split a time series stream into separate substreams, and accurately identify each resident's activities. To address this challenge, we introduce Gamut . This novel unsupervised method jointly estimates the number of residents and associates sensor readings with those residents, based on a multi-target Gaussian mixture probability hypothesis density filter. We hypothesize that the proposed method will offer robust recognition for homes with two or more residents. In experiments with labeled data collected from 50 single-resident and 11 multi-resident homes, we observe that Gamut outperforms previous unsupervised and supervised methods, offering a robust strategy to track behavioral routines in complex settings.more » « less
-
Aminikhanghahi, Samaneh; Wang, Tinghui; Cook, Diane J. (, IEEE Transactions on Knowledge and Data Engineering)
-
Aminikhanghahi, Samaneh; Wang, Tinghui; Cook, Diane J (, IEEE transactions on knowledge and data engineering)