skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wang, Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. In this paper, we investigate the practical performance of rank-code based cryptography on FPGA platforms by presenting a case study on the quantum-safe KEM scheme based on LRPC codes called ROLLO, which was among NIST post-quantum cryptography standardization round-2 candidates. Specifically, we present an FPGA implementation of the encapsulation and decapsulation operations of the ROLLO KEM scheme with some variations to the original specification. The design is fully parameterized, using code-generation scripts to support a wide range of parameter choices for security levels specified in ROLLO. At the core of the ROLLO hardware, we presented a generic approach for hardware-based Gaussian elimination, which can process both non-singular and singular matrices. Previous works on hardware-based Gaussian elimination can only process non-singular ones. However, a plethora of cryptosystems, for instance, quantum-safe key encapsulation mechanisms based on rank-metric codes, ROLLO and RQC, which are among NIST post-quantum cryptography standardization round-2 candidates, require performing Gaussian elimination for random matrices regardless of the singularity. To the best of our knowledge, this work is the first hardware implementation for rank-code-based cryptographic schemes. The experimental results suggest rank-code-based schemes can be highly efficient. 
    more » « less
  3. Abstract

    Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish,Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian–earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  4. We present the first specification-compliant constant-time FPGA implementation of the Classic McEliece cryptosystem from the third-round of NIST’s Post-Quantum Cryptography standardization process. In particular, we present the first complete implementation including encapsulation and decapsulation modules as well as key generation with seed expansion. All the hardware modules are parametrizable, at compile time, with security level and performance parameters. As the most time consuming operation of Classic McEliece is the systemization of the public key matrix during key generation, we present and evaluate three new algorithms that can be used for systemization while complying with the specification: hybrid early-abort systemizer (HEA), single-pass early-abort systemizer (SPEA), and dual-pass earlyabort systemizer (DPEA). All of the designs outperform the prior systemizer designs for Classic McEliece by 2.2x to 2.6x in average runtime and by 1.7x to 2.4x in time-area efficiency. We show that our complete Classic McEliece design for example can perform key generation in 5.2 ms to 20 ms, encapsulation in 0.1 ms to 0.5 ms, and decapsulation in 0.7 ms to 1.5 ms for all security levels on an Xlilinx Artix 7 FPGA. The performance can be increased even further at the cost of resources by increasing the level of parallelization using the performance parameters of our design.

     
    more » « less
  5. Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 physically associated with RPW8.2 with its RING finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase of RPW8.2 in the nucleus. In turn, the nucleus-localised RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity. 
    more » « less
  6. Species retaining ancestral features, such as species called living fossils, are often regarded as less derived than their sister groups, but such discussions are usually based on qualitative enumeration of conserved traits. This approach creates a major barrier, especially when quantifying the degree of phenotypic evolution or degree of derivedness, since it focuses only on commonly shared traits, and newly acquired or lost traits are often overlooked. To provide a potential solution to this problem, especially for inter-species comparison of gene expression profiles, we propose a new method named “derivedness index” to quantify the degree of derivedness. In contrast to the conservation-based approach, which deals with expressions of commonly shared genes among species being compared, the derivedness index also considers those that were potentially lost or duplicated during evolution. By applying our method, we found that the gene expression profiles of penta-radial phases in echinoderm tended to be more highly derived than those of the bilateral phase. However, our results suggest that echinoderms may not have experienced much larger modifications to their developmental systems than chordates, at least at the transcriptomic level. In vertebrates, we found that the mid-embryonic and organogenesis stages were generally less derived than the earlier or later stages, indicating that the conserved phylotypic period is also less derived. We also found genes that potentially explain less derivedness, such as Hox genes. Finally, we highlight technical concerns that may influence the measured transcriptomic derivedness, such as read depth and library preparation protocols, for further improvement of our method through future studies. We anticipate that this index will serve as a quantitative guide in the search for constrained developmental phases or processes. 
    more » « less
  7. null (Ed.)
    This paper presents the first 28 nm ASIC implementation of an accelerator for the post-quantum digital signature scheme XMSS. In particular, this paper presents an architecture for a novel, pipelined XMSS Leaf accelerator for accelerating the most compute-intensive step in the XMSS algorithm. This paper then presents the ASIC designs for both an existing non-pipelined accelerator architecture and the novel, pipelined XMSS Leaf accelerator. In addition, the performance of the28 nm ASIC is compared to the same designs on 28 nm Artix-7FPGAs. The novel pipelined XMSS Leaf accelerator is 25% faster compared to the non-pipelined version in the ASIC, and both accelerator architectures have a 10×lower power consumption than on the FPGAs. The evaluation shows that the pipelining increases the frequency by 1.7×on the FPGA but only 1.2×on the ASIC, due to the critical path in the ASIC being in the memory. The non-pipelined XMSS Leaf accelerator is shown to have a significantly better area-delay and energy-delay metric on the ASIC, while the pipelined accelerator wins out in these metrics on the FPGA. Consequently, this work shows the different architectural decisions that need to be made between FPGA and ASIC designs, when selecting how to best implement a post-quantum cryptographic accelerator in hardware. 
    more » « less
  8. The low-cost and easy-to-use nature of rapidly developed PM2.5 sensors provide an opportunity to bring breakthroughs in PM2.5 research to resource-limited countries in Southeast Asia (SEA). This review provides an evaluation of the currently available literature and identifies research priorities in applying low-cost sensors (LCS) in PM2.5 environmental and health research in SEA. The research priority is an outcome of a series of participatory workshops under the umbrella of the International Global Atmospheric Chemistry Project–Monsoon Asia and Oceania Networking Group (IGAC–MANGO). A literature review and research prioritization are conducted with a transdisciplinary perspective of providing useful scientific evidence in assisting authorities in formulating targeted strategies to reduce severe PM2.5 pollution and health risks in this region. The PM2.5 research gaps that could be filled by LCS application are identified in five categories: source evaluation, especially for the distinctive sources in the SEA countries; hot spot investigation; peak exposure assessment; exposure–health evaluation on acute health impacts; and short-term standards. The affordability of LCS, methodology transferability, international collaboration, and stakeholder engagement are keys to success in such transdisciplinary PM2.5 research. Unique contributions to the international science community and challenges with LCS application in PM2.5 research in SEA are also discussed.

     
    more » « less