skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Universal Gaussian elimination hardware for cryptographic purposes
In this paper, we investigate the possibility of performing Gaussian elimination for arbitrary binary matrices on hardware. In particular, we presented a generic approach for hardware-based Gaussian elimination, which is able to process both non-singular and singular matrices. Previous works on hardware-based Gaussian elimination can only process non-singular ones. However, a plethora of cryptosystems, for instance, quantum-safe key encapsulation mechanisms based on rank-metric codes, ROLLO and RQC, which are among NIST post-quantum cryptography standardization round-2 candidates, require performing Gaussian elimination for random matrices regardless of the singularity. We accordingly implemented an optimized and parameterized Gaussian eliminator for (singular) matrices over binary fields, making the intense computation of linear algebra feasible and efficient on hardware. To the best of our knowledge, this work solves for the first time eliminating a singular matrix on reconfigurable hardware and also describes the a generic hardware architecture for rank-code based cryptographic schemes. The experimental results suggest hardware-based Gaussian elimination can be done in linear time regardless of the matrix type.  more » « less
Award ID(s):
1801512
PAR ID:
10563183
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of Cryptographic Engineering
Volume:
14
Issue:
2
ISSN:
2190-8508
Page Range / eLocation ID:
383 to 397
Subject(s) / Keyword(s):
Post-quantum cryptography Gauassian elimination FPGA
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we investigate the practical performance of rank-code based cryptography on FPGA platforms by presenting a case study on the quantum-safe KEM scheme based on LRPC codes called ROLLO, which was among NIST post-quantum cryptography standardization round-2 candidates. Specifically, we present an FPGA implementation of the encapsulation and decapsulation operations of the ROLLO KEM scheme with some variations to the original specification. The design is fully parameterized, using code-generation scripts to support a wide range of parameter choices for security levels specified in ROLLO. At the core of the ROLLO hardware, we presented a generic approach for hardware-based Gaussian elimination, which can process both non-singular and singular matrices. Previous works on hardware-based Gaussian elimination can only process non-singular ones. However, a plethora of cryptosystems, for instance, quantum-safe key encapsulation mechanisms based on rank-metric codes, ROLLO and RQC, which are among NIST post-quantum cryptography standardization round-2 candidates, require performing Gaussian elimination for random matrices regardless of the singularity. To the best of our knowledge, this work is the first hardware implementation for rank-code-based cryptographic schemes. The experimental results suggest rank-code-based schemes can be highly efficient. 
    more » « less
  2. We propose a unified framework to solve general low-rank plus sparse matrix recovery problems based on matrix factorization, which covers a broad family of objective functions satisfying the restricted strong convexity and smoothness conditions. Based on projected gradient descent and the double thresholding operator, our proposed generic algorithm is guaranteed to converge to the unknown low-rank and sparse matrices at a locally linear rate, while matching the best-known robustness guarantee (i.e., tolerance for sparsity). At the core of our theory is a novel structural Lipschitz gradient condition for low-rank plus sparse matrices, which is essential for proving the linear convergence rate of our algorithm, and we believe is of independent interest to prove fast rates for general superposition-structured models. We illustrate the application of our framework through two concrete examples: robust matrix sensing and robust PCA. Empirical experiments corroborate our theory. 
    more » « less
  3. We present an algorithmic framework for quantum-inspired classical algorithms on close-to-low-rank matrices, generalizing the series of results started by Tang’s breakthrough quantum-inspired algorithm for recommendation systems [STOC’19]. Motivated by quantum linear algebra algorithms and the quantum singular value transformation (SVT) framework of Gilyén et al. [STOC’19], we develop classical algorithms for SVT that run in time independent of input dimension, under suitable quantum-inspired sampling assumptions. Our results give compelling evidence that in the corresponding QRAM data structure input model, quantum SVT does not yield exponential quantum speedups. Since the quantum SVT framework generalizes essentially all known techniques for quantum linear algebra, our results, combined with sampling lemmas from previous work, suffice to generalize all prior results about dequantizing quantum machine learning algorithms. In particular, our classical SVT framework recovers and often improves the dequantization results on recommendation systems, principal component analysis, supervised clustering, support vector machines, low-rank regression, and semidefinite program solving. We also give additional dequantization results on low-rank Hamiltonian simulation and discriminant analysis. Our improvements come from identifying the key feature of the quantum-inspired input model that is at the core of all prior quantum-inspired results: ℓ2-norm sampling can approximate matrix products in time independent of their dimension. We reduce all our main results to this fact, making our exposition concise, self-contained, and intuitive. 
    more » « less
  4. We present a new class of preconditioned iterative methods for solving linear systems of the form Ax = b. Our methods are based on constructing a low-rank Nyström approximation to A using sparse random matrix sketching. This approximation is used to construct a preconditioner, which itself is inverted quickly using additional levels of random sketching and preconditioning. We prove that the convergence of our methods depends on a natural average condition number of A, which improves as the rank of the Nyström approximation increases. Concretely, this allows us to obtain faster runtimes for a number of fundamental linear algebraic problems: 1. We show how to solve any n × n linear system that is well-conditioned except for k outlying large singular values in Õ (n2.065 + kω) time, improving on a recent result of [Derezmski, Yang, STOC 2024] for all k ≳ n0.78. 2. We give the first Õ (n2 + dλω) time algorithm for solving a regularized linear system (A+λΙ)x = b, where A is positive semidefinite with effective dimension dλ = tr(A(A + λΙ)-1). This problem arises in applications like Gaussian process regression. 3. We give faster algorithms for approximating Schatten p-norms and other matrix norms. For example, for the Schatten 1-norm (nuclear norm), we give an algorithm that runs in Õ (n2.11) time, improving on an Õ (n2.18) method of [Musco et al., ITCS 2018]. All results are proven in the real RAM model of computation. Interestingly, previous state-of-the-art algorithms for most of the problems above relied on stochastic iterative methods, like stochastic coordinate and gradient descent. Our work takes a completely different approach, instead leveraging tools from matrix sketching. 
    more » « less
  5. We propose an algorithm to impute and forecast a time series by transforming the observed time series into a matrix, utilizing matrix estimation to recover missing values and de-noise observed entries, and performing linear regression to make predictions. At the core of our analysis is a representation result, which states that for a large class of models, the transformed time series matrix is (approximately) low-rank. In effect, this generalizes the widely used Singular Spectrum Analysis (SSA) in the time series literature, and allows us to establish a rigorous link between time series analysis and matrix estimation. The key to establishing this link is constructing a Page matrix with non-overlapping entries rather than a Hankel matrix as is commonly done in the literature (e.g., SSA). This particular matrix structure allows us to provide finite sample analysis for imputation and prediction, and prove the asymptotic consistency of our method. Another salient feature of our algorithm is that it is model agnostic with respect to both the underlying time dynamics and the noise distribution in the observations. The noise agnostic property of our approach allows us to recover the latent states when only given access to noisy and partial observations a la a Hidden Markov Model; e.g., recovering the time-varying parameter of a Poisson process without knowing that the underlying process is Poisson. Furthermore, since our forecasting algorithm requires regression with noisy features, our approach suggests a matrix estimation based method-coupled with a novel, non-standard matrix estimation error metric-to solve the error-in-variable regression problem, which could be of interest in its own right. Through synthetic and real-world datasets, we demonstrate that our algorithm outperforms standard software packages (including R libraries) in the presence of missing data as well as high levels of noise. 
    more » « less