skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, X L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the bottomonium sector, the hindered magnetic dipole transitions between P-wave states h b ( 2 P ) χ b J ( 1 P ) γ , J = 0 , 1, 2, are expected to be severely suppressed according to the relativized quark model, due to the spin flip of the b quark. Nevertheless, a recent model following the coupled-channel approach predicts the corresponding branching fractions to be enhanced by orders of magnitude. In this Letter, we report the first search for such transitions. We find no significant signals and set upper limits at 90% confidence level on the corresponding branching fractions: B [ h b ( 2 P ) γ χ b 0 ( 1 P ) ] < 2.7 × 10 1 , B [ h b ( 2 P ) γ χ b 1 ( 1 P ) ] < 5.4 × 10 3 and B [ h b ( 2 P ) γ χ b 2 ( 1 P ) ] < 1.3 × 10 2 . These values help to constrain the parameters of the coupled-channel models. The results are obtained using a 121.4 fb 1 data sample taken around s = 10.860 GeV with the Belle detector at the KEKB asymmetric-energy e + e collider. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. We report the first evidence for the h b ( 2 P ) ϒ ( 1 S ) η transition with a significance of 3.5 standard deviations. The decay branching fraction is measured to be B [ h b ( 2 P ) ϒ ( 1 S ) η ] = ( 7.1 3.2 + 3.7 ± 0.8 ) × 10 3 , which is noticeably smaller than expected. We also set upper limits on π 0 transitions of B [ h b ( 2 P ) ϒ ( 1 S ) π 0 ] < 1.8 × 10 3 , and B [ h b ( 1 P ) ϒ ( 1 S ) π 0 ] < 1.8 × 10 3 , at the 90% confidence level. These results are obtained with a 131.4 fb 1 data sample collected near the ϒ ( 5 S ) resonance with the Belle detector at the KEKB asymmetric-energy e + e collider. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. We measure the complete set of angular coefficients J i for exclusive B ¯ D * ν ¯ decays ( = e , μ ). Our analysis uses the full 711 fb 1 Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the B ¯ D * transition and the Cabibbo-Kobayashi-Maskawa matrix element | V cb | . Using recent lattice QCD calculations for the hadronic form factors, we find | V cb | = ( 40.7 ± 0.7 ) × 10 3 using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter w and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024 
    more » « less
  4. We report the results of the first search for B decays to the Ξ ¯ c 0 Λ ¯ c final state using 711 fb 1 of data collected at the ϒ ( 4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e + e collider. The results are interpreted in terms of both direct baryon-number-violating B decay and Ξ c 0 Ξ ¯ c 0 oscillations which follow the standard model decay B Ξ c 0 Λ ¯ c . We observe no evidence for baryon number violation and set the 95% confidence-level upper limits on the ratio of baryon-number-violating and standard model branching fractions B ( B Ξ ¯ c 0 Λ ¯ c ) / B ( B Ξ c 0 Λ ¯ c ) to be < 2.7 % and on the effective angular frequency of mixing ω in Ξ c 0 Ξ ¯ c 0 oscillations to be < 0.76 ps 1 (equivalent to τ mix > 1.3 ps ). Published by the American Physical Society2024 
    more » « less
  5. A<sc>bstract</sc> We perform the first search forCPviolation in$$ {D}_{(s)}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. We use a combined data set from the Belle and Belle II experiments, which studye+ecollisions at center-of-mass energies at or near the Υ(4S) resonance. We use 980 fb−1of data from Belle and 428 fb−1of data from Belle II. We measure sixCP-violating asymmetries that are based on triple products and quadruple products of the momenta of final-state particles, and also the particles’ helicity angles. We obtain a precision at the level of 0.5% for$$ {D}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D + K S 0 K π + π + decays, and better than 0.3% for$$ {D}_s^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. No evidence ofCPviolation is found. Our results for the triple-product asymmetries are the most precise to date for singly-Cabibbo-suppressedD+decays. Our results for the other asymmetries are the first such measurements performed for charm decays. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  6. A<sc>bstract</sc> We report measurements of the absolute branching fractions$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)$$, where the latter is measured for the first time. The results are based on a 121.4 fb−1data sample collected at the Υ(10860) resonance by the Belle detector at the KEKB asymmetric-energye+ecollider. We reconstruct one$${B}_{s}^{0}$$meson in$${e}^{+}{e}^{-}\to \Upsilon\left(10860\right)\to {B}_{s}^{*}{\overline{B} }_{s}^{*}$$events and measure yields of$${D}_{s}^{+}$$,D0, andD+mesons in the rest of the event. We obtain$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(68.6\pm 7.2\pm 4.0\right)\%$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(21.5\pm 6.1\pm 1.8\right)\%$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)=\left(12.6\pm 4.6\pm 1.3\right)\%$$, where the first uncertainty is statistical and the second is systematic. Averaging with previous Belle measurements gives$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(63.4\pm 4.5\pm 2.2\right)\%$$and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(23.9\pm 4.1\pm 1.8\right)\%$$. For the$${B}_{s}^{0}$$production fraction at the Υ(10860), we find$${f}_{s}=\left({21.4}_{-1.7}^{+1.5}\right)\%$$. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  7. We present a measurement of the branching fraction and time-dependent charge-parity ( C P ) decay-rate asymmetries in B 0 J / ψ π 0 decays. The data sample was collected with the Belle II detector at the SuperKEKB asymmetric e + e collider in 2019–2022 and contains ( 387 ± 6 ) × 10 6 B B ¯ meson pairs from ϒ ( 4 S ) decays. We reconstruct 392 ± 24 signal decays and fit the C P parameters from the distribution of the proper-decay-time difference of the two B mesons. We measure the branching fraction to be ( B 0 J / ψ π 0 ) = ( 2.00 ± 0.12 ± 0.09 ) × 10 5 and the direct and mixing-induced C P asymmetries to be C C P = 0.13 ± 0.12 ± 0.03 and S C P = 0.88 ± 0.17 ± 0.03 , respectively, where the first uncertainties are statistical and the second are systematic. We observe mixing-induced C P violation with a significance of 5.0 standard deviations for the first time in this mode. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  8. We report measurements of time-dependent C P asymmetries in B 0 K S 0 π 0 γ decays based on a data sample of ( 388 ± 6 ) × 10 6 B B ¯ events collected at the ϒ ( 4 S ) resonance with the Belle II detector. The Belle II experiment operates at the SuperKEKB asymmetric-energy e + e collider. We measure decay-time distributions to determine C P -violating parameters S and C . We determine these parameters for two ranges of K S 0 π 0 invariant mass: m ( K S 0 π 0 ) ( 0.8 , 1.0 ) GeV / c 2 , which is dominated by B 0 K * 0 ( K S 0 π 0 ) γ decays, and a complementary region m ( K S 0 π 0 ) ( 0.6 , 0.8 ) ( 1.0 , 1.8 ) GeV / c 2 . Our results have improved precision as compared to previous measurements and are consistent with theory predictions. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026