skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Xiaoqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 24, 2026
  2. Free, publicly-accessible full text available April 24, 2026
  3. Free, publicly-accessible full text available April 24, 2026
  4. Free, publicly-accessible full text available February 28, 2026
  5. Free, publicly-accessible full text available December 10, 2025
  6. Free, publicly-accessible full text available November 12, 2025
  7. Free, publicly-accessible full text available December 10, 2025
  8. Free, publicly-accessible full text available December 3, 2025
  9. Learning fair representation in deep learning is essential to mitigate discriminatory outcomes and enhance trustworthiness. However previous research has been commonly established on inappropriate assumptions prone to unrealistic counterfactuals and performance degradation. Although some proposed alternative approaches such as employing correlation-aware causal graphs or proxies for mutual information these methods are less practical and not applicable in general. In this work we propose FAir DisEntanglement with Sensitive relevance (FADES) a novel approach that leverages conditional mutual information from the information theory perspective to address these challenges. We employ sensitive relevant code to direct correlated information between target labels and sensitive attributes by imposing conditional independence allowing better separation of the features of interest in the latent space. Utilizing an intuitive disentangling approach FADES consistently achieves superior performance and fairness both quantitatively and qualitatively with its straightforward structure. Specifically the proposed method outperforms existing works in downstream classification and counterfactual generations on various benchmarks. 
    more » « less