skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FADES: Fair Disentanglement with Sensitive Relevance
Learning fair representation in deep learning is essential to mitigate discriminatory outcomes and enhance trustworthiness. However previous research has been commonly established on inappropriate assumptions prone to unrealistic counterfactuals and performance degradation. Although some proposed alternative approaches such as employing correlation-aware causal graphs or proxies for mutual information these methods are less practical and not applicable in general. In this work we propose FAir DisEntanglement with Sensitive relevance (FADES) a novel approach that leverages conditional mutual information from the information theory perspective to address these challenges. We employ sensitive relevant code to direct correlated information between target labels and sensitive attributes by imposing conditional independence allowing better separation of the features of interest in the latent space. Utilizing an intuitive disentangling approach FADES consistently achieves superior performance and fairness both quantitatively and qualitatively with its straightforward structure. Specifically the proposed method outperforms existing works in downstream classification and counterfactual generations on various benchmarks.  more » « less
Award ID(s):
2146091
PAR ID:
10525251
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradientbased optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy. 
    more » « less
  2. Learning fair representations is an essential task to reduce bias in data-oriented decision making. It protects minority subgroups by requiring the learned representations to be independent of sensitive attributes. To achieve independence, the vast majority of the existing work primarily relaxes it to the minimization of the mutual information between sensitive attributes and learned representations. However, direct computation of mutual information is computationally intractable, and various upper bounds currently used either are still intractable or contradict the utility of the learned representations. In this paper, we introduce distance covariance as a new dependence measure into fair representation learning. By observing that sensitive attributes (e.g., gender, race, and age group) are typically categorical, the distance covariance can be converted to a tractable penalty term without contradicting the utility desideratum. Based on the tractable penalty, we propose FairDisCo, a variational method to learn fair representations. Experiments demonstrate that FairDisCo outperforms existing competitors for fair representation learning. 
    more » « less
  3. Quantifying mutual information between inputs and outputs of a large neural circuit is an important open problem in both machine learning and neuroscience. However, evaluation of the mutual information is known to be generally intractable for large systems due to the exponential growth in the number of terms that need to be evaluated. Here we show how information contained in the responses of large neural populations can be effectively computed provided the input-output functions of individual neurons can be measured and approximated by a logistic function applied to a potentially nonlinear function of the stimulus. Neural responses in this model can remain sensitive to multiple stimulus components. We show that the mutual information in this model can be effectively approximated as a sum of lower-dimensional conditional mutual information terms. The approximations become exact in the limit of large neural populations and for certain conditions on the distribution of receptive fields across the neural population. We empirically find that these approximations continue to work well even when the conditions on the receptive field distributions are not fulfilled. The computing cost for the proposed methods grows linearly in the dimension of the input and compares favorably with other approximations. 
    more » « less
  4. The conditional mutual information I(X; Y|Z) measures the average information that X and Y contain about each other given Z. This is an important primitive in many learning problems including conditional independence testing, graphical model inference, causal strength estimation and time-series problems. In several applications, it is desirable to have a functional purely of the conditional distribution py|x, z rather than of the joint distribution pX, Y, Z. We define the potential conditional mutual information as the conditional mutual information calculated with a modified joint distribution pY|X, ZqX, Z, where qX, Z is a potential distribution, fixed airport. We develop K nearest neighbor based estimators for this functional, employing importance sampling, and a coupling trick, and prove the finite k consistency of such an estimator. We demonstrate that the estimator has excellent practical performance and show an application in dynamical system inference. 
    more » « less
  5. Estimation of information theoretic quantities such as mutual information and its conditional variant has drawn interest in recent times owing to their multifaceted applications. Newly proposed neural estimators for these quantities have overcome severe drawbacks of classical kNN-based estimators in high dimensions. In this work, we focus on conditional mutual information (CMI) estimation by utilizing its formulation as a minmax optimization problem. Such a formulation leads to a joint training procedure similar to that of generative adversarial networks. We find that our proposed estimator provides better estimates than the existing approaches on a variety of simulated datasets comprising linear and non-linear relations between variables. As an application of CMI estimation, we deploy our estimator for conditional independence (CI) testing on real data and obtain better results than state-of-the-art CI testers 
    more » « less