skip to main content

Search for: All records

Creators/Authors contains: "Wang, Yanbang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dynamic social interaction networks are an important abstraction to model time-stamped social interactions such as eye contact, speaking and listening between people. These networks typically contain informative while subtle patterns that reflect people’s social characters and relationship, and therefore attract the attentions of a lot of social scientists and computer scientists. Previous approaches on extracting those patterns primarily rely on sophisticated expert knowledge of psychology and social science, and the obtained features are often overly task-specific. More generic models based on representation learning of dynamic networks may be applied, but the unique properties of social interactions cause severe model mismatch and degenerate the quality of the obtained representations. Here we fill this gap by proposing a novel framework, termed TEmporal network-DIffusion Convolutional networks (TEDIC), for generic representation learning on dynamic social interaction networks. We make TEDIC a good fit by designing two components: 1) Adopt diffusion of node attributes over a combination of the original network and its complement to capture long-hop interactive patterns embedded in the behaviors of people making or avoiding contact; 2) Leverage temporal convolution networks with hierarchical set-pooling operation to flexibly extract patterns from different-length interactions scattered over a long time span. The design also endowsmore »TEDIC with certain self-explaining power. We evaluate TEDIC over five real datasets for four different social character prediction tasks including deception detection, dominance identification, nervousness detection and community detection. TEDIC not only consistently outperforms previous SOTA’s, but also provides two important pieces of social insight. In addition, it exhibits favorable societal characteristics by remaining unbiased to people from different regions. Our project website is:« less
  2. Temporal networks serve as abstractions of many real-world dynamic systems. These networks typically evolve according to certain laws, such as the law of triadic closure, which is universal in social networks. Inductive representation learning of temporal networks should be able to capture such laws and further be applied to systems that follow the same laws but have not been unseen during the training stage. Previous works in this area depend on either network node identities or rich edge attributes and typically fail to extract these laws. Here, we propose Causal Anonymous Walks (CAWs) to inductively represent a temporal network. CAWs are extracted by temporal random walks and work as automatic retrieval of temporal network motifs to represent network dynamics while avoiding the time-consuming selection and counting of those motifs. CAWs adopt a novel anonymization strategy that replaces node identities with the hitting counts of the nodes based on a set of sampled walks to keep the method inductive, and simultaneously establish the correlation between motifs. We further propose a neural-network model CAW-N to encode CAWs, and pair it with a CAW sampling strategy with constant memory and time cost to support online training and inference. CAW-N is evaluated to predictmore »links over 6 real temporal networks and uniformly outperforms previous SOTA methods by averaged 15% AUC gain in the inductive setting. CAW-N also outperforms previous methods in 5 out of the 6 networks in the transductive setting.« less
  3. Learning representations of sets of nodes in a graph is crucial for applications ranging from node-role discovery to link prediction and molecule classification. Graph Neural Networks (GNNs) have achieved great success in graph representation learning. However, expressive power of GNNs is limited by the 1-Weisfeiler-Lehman (WL) test and thus GNNs generate identical representations for graph substructures that may in fact be very different. More powerful GNNs, proposed recently by mimicking higher-order-WL tests, only focus on representing entire graphs and they are computationally inefficient as they cannot utilize sparsity of the underlying graph. Here we propose and mathematically analyze a general class of structure related features, termed Distance Encoding (DE). DE assists GNNs in representing any set of nodes, while providing strictly more expressive power than the 1-WL test. DE captures the distance between the node set whose representation is to be learned and each node in the graph. To capture the distance DE can apply various graph-distance measures such as shortest path distance or generalized PageRank scores. We propose two ways for GNNs to use DEs (1) as extra node features, and (2) as controllers of message aggregation in GNNs. Both approaches can utilize the sparse structure of the underlyingmore »graph, which leads to computational efficiency and scalability. We also prove that DE can distinguish node sets embedded in almost all regular graphs where traditional GNNs always fail. We evaluate DE on three tasks over six real networks: structural role prediction, link prediction, and triangle prediction. Results show that our models outperform GNNs without DE by up-to 15% in accuracy and AUROC. Furthermore, our models also significantly outperform other state-of-the-art methods especially designed for the above tasks.« less