- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
01000020000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Yunbo (3)
-
Bansal, Karan (1)
-
Cui, Ying (1)
-
Deng, Changyu (1)
-
Deng, Zhaoxing (1)
-
Du, Yayun (1)
-
Fang, Zicheng (1)
-
Hu, Yongjie (1)
-
Huang, Weicheng (1)
-
Jawed, Mohammad K. (1)
-
Jawed, Mohammad Khalid (1)
-
Kang, Joon Sang (1)
-
Li, Man (1)
-
Li, Xuanhe (1)
-
Nagata, Taiki (1)
-
Qin, Zihao (1)
-
Quadir, Mohiuddin (1)
-
Xia, Hongyan (1)
-
Yang, Chiyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Du, Yayun ; Deng, Zhaoxing ; Fang, Zicheng ; Wang, Yunbo ; Nagata, Taiki ; Bansal, Karan ; Quadir, Mohiuddin ; Jawed, Mohammad Khalid ( , 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS))null (Ed.)
-
Li, Man ; Qin, Zihao ; Cui, Ying ; Yang, Chiyu ; Deng, Changyu ; Wang, Yunbo ; Kang, Joon Sang ; Xia, Hongyan ; Hu, Yongjie ( , Advanced Materials Interfaces)
Abstract High performance thermal insulation materials are desired for a wide range of applications in space, buildings, energy, and environments. Here, a facile ambient processing approach is reported to synthesize a highly insulating and flexible monolithic poly(vinyl chloride) aerogel. The thermal conductivity is measured respectively as 28 mW (m K)−1at atmosphere approaching the air conductivity and 7.7 mW (m K)−1under mild evacuation condition. Thermal modeling is performed to understand the thermal conductivity contributions from different heat transport pathways in air and solid. The analysis based on the Knudsen effect and scattering mean free paths shows that the thermal insulation performance can be further improved through the optimization of porous structures to confine the movement of air molecules. Additionally, the prepared aerogels show superhydrophobicity due to the highly porous structures, which enables new opportunities for surface engineering. Together, the study demonstrates an energy‐saving and scalable ambient‐processing pathway to achieve ultralight, flexible, and superhydrophobic poly(vinyl chloride) aerogel for thermal insulation applications.