skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Zhongrui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The application of hardware‐based neural networks can be enhanced by integrating sensory neurons and synapses that enable direct input from external stimuli. This work reports direct optical control of an oscillatory neuron based on volatile threshold switching in V3O5. The devices exhibit electroforming‐free operation with switching parameters that can be tuned by optical illumination. Using temperature‐dependent electrical measurements, conductive atomic force microscopy (C‐AFM), in situ thermal imaging, and lumped element modelling, it is shown that the changes in switching parameters, including threshold and hold voltages, arise from overall conductivity increase of the oxide film due to the contribution of both photoconductive and bolometric characteristics of V3O5, which eventually affects the oscillation dynamics. Furthermore, V3O5is identified as a new bolometric material with a temperature coefficient of resistance (TCR) as high as −4.6% K−1at 423 K. The utility of these devices is illustrated by demonstrating in‐sensor reservoir computing with reduced computational effort and an optical encoding layer for spiking neural network (SNN), respectively, using a simulated array of devices. 
    more » « less
  2. Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies. 
    more » « less
  3. Abstract The increasing interests in analog computing nowadays call for multipurpose analog computing platforms with reconfigurability. The advancement of analog computing, enabled by novel electronic elements like memristors, has shown its potential to sustain the exponential growth of computing demand in the new era of analog data deluge. Here, a platform of a memristive field‐programmable analog array (memFPAA) is experimentally demonstrated with memristive devices serving as a variety of core analog elements and CMOS components as peripheral circuits. The memFPAA is reconfigured to implement a first‐order band pass filter, an audio equalizer, and an acoustic mixed frequency classifier, as application examples. The memFPAA, featured with programmable analog memristors, memristive routing networks, and memristive vector‐matrix multipliers, opens opportunities for fast prototyping analog designs as well as efficient analog applications in signal processing and neuromorphic computing. 
    more » « less
  4. Abstract Different from nonvolatile memory applications, neuromorphic computing applications utilize not only the static conductance states but also the switching dynamics for computing, which calls for compact dynamical models of memristive devices. In this work, a generalized model to simulate diffusive and drift memristors with the same set of equations is presented, which have been used to reproduce experimental results faithfully. The diffusive memristor is chosen as the basis for the generalized model because it possesses complex dynamical properties that are difficult to model efficiently. A data set from statistical measurements on SiO2:Ag diffusive memristors is collected to verify the validity of the general model. As an application example, spike‐timing‐dependent plasticity is demonstrated with an artificial synapse consisting of a diffusive memristor and a drift memristor, both modeled with this comprehensive compact model. 
    more » « less
  5. Sneak path current is a fundamental issue and a major roadblock to the wide application of memristor crossbar arrays. Traditional selectors such as transistors compromise the 2D scalability and 3D stack‐ability of the array, while emerging selectors with highly nonlinear current–voltage relations contradict the requirement of a linear current–voltage relation for efficient multiplication by directly using Ohm's law. Herein, the concept of a timing selector is proposed and demonstrated, which addresses the sneak path issue with a voltage‐dependent delay time of its transient switching behavior, while preserving a linear current–voltage relationship for computation. Crossbar arrays with silver‐based diffusive memristors as the timing selectors are built and the operation principle and operational windows are experimentally demonstrated. The timing selector enables large memristor crossbar arrays that can be used to solve large‐dimension real‐world problems in machine intelligence and neuromorphic computing. 
    more » « less