Memristor devices have been extensively studied as one of the most promising technologies for next-generation non-volatile memory. However, for the memristor devices to have a real technological impact, they must be densely packed in a large crossbar array (CBA) exceeding Gigabytes in size. Devising a selector device that is CMOS compatible, 3D stackable, and has a high non-linearity (NL) and great endurance is a crucial enabling ingredient to reach this goal. Tunneling based selectors are very promising in these aspects, but the mediocre NL value limits their applications in large passive crossbar arrays. In this work, we demonstrated a trilayer tunneling selector based on the Ge/Pt/TaN 1+x /Ta 2 O 5 /TaN 1+x /Pd layers that could achieve a NL of 3 × 10 5 , which is the highest NL achieved using a tunnel selector so far. The record-high tunneling NL is partially attributed to the bottom electrode's ultra-smoothness (BE) induced by a Ge/Pt layer. We further demonstrated the feasibility of 1S1R (1-selector 1-resistor) integration by vertically integrating a Pd/Ta 2 O 5 /Ru based memristor on top of the proposed selector.
more »
« less
Timing Selector: Using Transient Switching Dynamics to Solve the Sneak Path Issue of Crossbar Arrays
Sneak path current is a fundamental issue and a major roadblock to the wide application of memristor crossbar arrays. Traditional selectors such as transistors compromise the 2D scalability and 3D stack‐ability of the array, while emerging selectors with highly nonlinear current–voltage relations contradict the requirement of a linear current–voltage relation for efficient multiplication by directly using Ohm's law. Herein, the concept of a timing selector is proposed and demonstrated, which addresses the sneak path issue with a voltage‐dependent delay time of its transient switching behavior, while preserving a linear current–voltage relationship for computation. Crossbar arrays with silver‐based diffusive memristors as the timing selectors are built and the operation principle and operational windows are experimentally demonstrated. The timing selector enables large memristor crossbar arrays that can be used to solve large‐dimension real‐world problems in machine intelligence and neuromorphic computing.
more »
« less
- Award ID(s):
- 2023752
- PAR ID:
- 10304879
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small Science
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2688-4046
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An efficient strategy for addressing individual devices is required to unveil the full potential of memristors for high‐density memory and computing applications. Existing strategies using two‐terminal selectors that are preferable for compact integration have trade‐offs in reduced generality or functional window. A strategy that applies to broad memristors and maintains their full‐range functional window is proposed. This strategy uses a type of unipolar switch featuring a transient relaxation or retention as the selector. The unidirectional current flow in the switch suppresses the sneak‐path current, whereas the transient‐relaxation window is exploited for bidirectional programming. A unipolar volatile memristor with ultralow switching voltage (e.g., <100 mV), constructed from a protein nanowire dielectric harvested fromGeobacter sulfurreducens, is specifically employed as the example switch to highlight the advantages and scalability in the strategy for array integration.more » « less
-
The increasing complexity of deep learning systems has pushed conventional computing technologies to their limits. While the memristor is one of the prevailing technologies for deep learning acceleration, it is only suited for classical learning layers where only two operands, namely weights and inputs, are processed simultaneously. Meanwhile, to improve the computational efficiency of deep learning for emerging applications, a variety of non-traditional layers requiring concurrent processing of many operands are becoming popular. For example, hypernetworks improve their predictive robustness by simultaneously processing weights and inputs against the application context. Two-electrode memristor grids cannot directly map emerging layers’ higher-order multiplicative neural interactions. Addressing this unmet need, we present crossbar processing using dual-gated memtransistors based on two-dimensional semiconductor MoS 2 . Unlike the memristor, the resistance states of memtransistors can be persistently programmed and can be actively controlled by multiple gate electrodes. Thus, the discussed memtransistor crossbar enables several advanced inference architectures beyond a conventional passive crossbar. For example, we show that sneak paths can be effectively suppressed in memtransistor crossbars, whereas they limit size scalability in a passive memristor crossbar. Similarly, exploiting gate terminals to suppress crossbar weights dynamically reduces biasing power by ∼20% in memtransistor crossbars for a fully connected layer of AlexNet. On emerging layers such as hypernetworks, collocating multiple operations within the same crossbar cells reduces operating power by ∼ 15 × on the considered network cases.more » « less
-
Abstract This study discusses the feasibility of Ferroelectric Capacitors (FeCaps) and Ferroelectric Field-Effect Transistors (FeFETs) as In-Memory Computing (IMC) elements to accelerate machine learning (ML) workloads. We conducted an exploration of device fabrication and proposed system-algorithm co-design to boost performance. A novel FeCap device, incorporating an interfacial layer (IL) and$$\text {Hf}_{0.5}\text {Zr}_{0.5}\text {O}_2$$ (HZO), ensures a reduction in operating voltage and enhances HZO scaling while being compatible with CMOS circuits. The IL also enriches ferroelectricity and retention properties. When integrated into crossbar arrays, FeCaps and FeFETs demonstrate their effectiveness as IMC components, eliminating sneak paths and enabling selector-less operation, leading to notable improvements in energy efficiency and area utilization. However, it is worth noting that limited capacitance ratios in FeCaps introduced errors in multiply-and-accumulate (MAC) computations. The proposed co-design approach helps in mitigating these errors and achieves high accuracy in classifying the CIFAR-10 dataset, elevating it from a baseline of 10% to 81.7%. FeFETs in crossbars, with a higher on-off ratio, outperform FeCaps, and our proposed charge-based sensing scheme achieved at least an order of magnitude reduction in power consumption, compared to prevalent current-based methods.more » « less
-
This paper presents an extensive study of linear and logistic regression algorithms implemented with 1T1R memristor crossbars arrays. Using a sophisticated simulation platform that wraps circuit-level simulations of 1T1R crossbars and physics-based models of RRAM (memristors), we elucidate the impact of device variability on algorithm accuracy, convergence rate and precision. Moreover, a smart pulsing strategy is proposed for practical implementation of synaptic weight updates that can accelerate training in real crossbar architectures. Stochastic multi-variable linear regression shows robustness to memristor variability in terms of prediction accuracy but reveals impact on convergence rate and precision. Similarly, the stochastic logistic regression crossbar implementation reveals immunity to memristor variability as determined by negligible effects on image classification accuracy but indicates an impact on training performance manifested as reduced convergence rate and degraded precision.more » « less
An official website of the United States government
