skip to main content


Search for: All records

Creators/Authors contains: "Ward Jones, Melissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The University of Alaska Fairbanks T Field is a legacy farm field that is part of the National Science Foundation (NSF) Funded Permafrost Grown project. We are studying the long-term effects of permafrost thaw following initial clearing for cultivation purposes. In this regard, we have acquired very high resolution light detection and ranging (LiDAR) data and digital photography from a DJI M300 drone using a Zenmuse L1 and a MicaSense RedEdge-P camera. The Zenmuse L1 integrates a Livox Lidar module, a high-accuracy inertial measurement units (IMU), and a camera with a 1-inch CMOS on a 3-axis stabilized gimbal. The MicaSense RedEdge-P camera has five multispectral bands and a high-resolution panchromatic band. The drone was configured to fly in real-time kinematic (RTK) mode at an altitude of 60 meters above ground level using the DJI D-RTK 2 base station. Data was acquired using a 50% sidelap and a 70% frontlap for the Zenmuse L1 and an 80% sidelap and a 75% frontlap for the MicaSense. Additional ground control was established with a Leica GS18 global navigation satellite system (GNSS) and all data have been post-processed to World Geodetic System 1984 (WGS84) universal transverse mercator (UTM) Zone 6 North using ellipsoid heights. Data outputs include a two-class-classified LiDAR point cloud, digital surface model, digital terrain model, an orthophoto mosaic, and a multispectral orthoimage consisting of five bands. Image acquisition occurred on 18 August 2023. 
    more » « less
  2. Abstract

    In 2007, the Anaktuvuk River fire burned more than 1000 km2of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization.

     
    more » « less
  3. The Permafrost Grown project (NSF RISE Award # 2126965) is co-producing knowledge with farmers in Alaska (Tanana Valley and Bethel) to investigate the interactions and feedbacks between permafrost and agriculture. Additional project objectives include understanding legacy effects over a 120-year cultivation history in the Tanana Valley, evaluating the socio-economic effects of permafrost-agriculture interactions and provide decision making tools for farmers and finally to utilize education and outreach activities to share knowledge with the farmers and the public. The project focuses on in-the-ground farming in a range of cultivation types including crops, peonies and livestock. The project is funded through the National Science Foundation's (NSF) Navigating the New Arctic Initiative. Data was collected at a small (less than one acre) farm that grows diverse crops. This farm has been impacted by subsidence from thawing ice-rich permafrost. The goal of the celery trials was to compare celery grown in areas that are wetter due to subsidence and celery grown in an upper area that has been less impacted by subsidence. In addition, over the same period, monitoring was done of two compost piles: one older pile that has been actively used and maintained for a few years that will no longer be maintained (i.e. adding of new material for decomposition) and the establishment of a new compost pile. The monitoring of the compost pile is part of a larger effort to determine the thermal impact of commonly used agricultural practices and the potential impact on permafrost. 
    more » « less
  4. The Permafrost Grown project (NSF RISE Award # 2126965) is co-producing knowledge with farmers in Alaska (Tanana Valley and Bethel) to investigate the interactions and feedbacks between permafrost and agriculture. Additional project objectives include understanding legacy effects over a 120-year cultivation history in the Tanana Valley, evaluating the socio-economic effects of permafrost-agriculture interactions and provide decision making tools for farmers and finally to utilize education and outreach activities to share knowledge with the farmers and the public. The project focuses on in-the-ground farming in a range of cultivation types including crops, peonies and livestock. The project is funded through the National Science Foundation's (NSF) Navigating the New Arctic Initiative. Temperature monitoring of various crop types with and without extension techniques was done at two farm sites in Fairbanks, Alaska (AK) during the 2022 growing season. This work was done through the Permafrost Grown Project as part of an effort to determine the thermal impact of commonly used agricultural seasonal-extension techniques, crop types and their potential impact on permafrost. Both farms are small scale, each cultivating on about 1 acre and both grow diverse crops. Both farms use various season extension techniques, including the use of plastic mulch to artificially warm soils and/or help control weeds. This dataset provides monitoring of ground temperatures at four depths (ground surface, 15 centimeter (cm), 50 cm and 100 cm) of various crops (carrots, cabbage, beets, onions, and squash). 
    more » « less
  5. ### Access Photos of ~50 permaforst boreholes and associated cores can be accessed and downloaded from the 'AR\_Fire\_Core_Photos' directory via: [https://arcticdata.io/data/10.18739/A2251FM9P/](https://arcticdata.io/data/10.18739/A2251FM9P/) ### Overview The Anaktuvuk River tundra fire burned more than 1,000 square kilometers of permafrost-affected arctic tundra in northern Alaska in 2007. The fire is the largest historical recorded tundra fire on the North Slope of Alaska. Fifty percent of the burn area is underlain by Yedoma permafrost that is characterized by extremely high ground-ice content of organic-rich, silty buried soils and the occurrence of large, syngenetic polygonal ice wedges. Given the high ground-ice content of this terrain, Yedoma is thought to be among the most vulnerable to fire-induced thermokarst in the Arctic. With this dataset, we update observations on near-surface permafrost in the Anaktuvuk River tundra fire burn area from 2009 to 2023 using repeat airborne LiDAR-derived elevation data, ground temperature measurements, and cryostratigraphic studies. We have provided all of the data that has gone into an analysis and resulting paper that has been submitted for peer review at the journal Scientific Reports. The datasets include: - 1 m spatial resolution airborne LiDAR-derived digital terrain models from the summers of 2009, 2014, and 2021. - The area in which thaw subsidence was detected in the multi-temporal LiDAR data using the Geomorphic Change Detection software. - A terrain unit map developed for the 50 square kilometer study area. - Ground temperature time series measurements for a logger located in the burned area and a logger located in an unburned area. The ground temperature data consist of daily mean measurements at a depth of 0.15 m (active layer) and 1.00 m (permafrost) from July 2009 to August 2023. - Photos ~50 permafrost boreholes and the associated cores collected there. - A borehole log and notes pdf also accompanies our studies on the cryostratigraphy of permafrost post-fire and our observations on the recovery of permafrost. 
    more » « less
  6. Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 19 and 20 July 2022 at the Bugeye Lakes Complex on the Arctic Coastal Plain of northern Alaska. 5,968 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 320 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 7–8 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 5 North in Ellipsoid Heights (meters). Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. 
    more » « less
  7. The Midnight Sun Golf Course in Fairbanks, Alaska is a legacy farm field that is part of the National Science Foundation (NSF) Funded Permafrost Grown project. This 65 hectare (ha) parcel was initially cleared for agriculture purposes but changed land-use practices to a golf course around 25 years ago. The land-use conversion was in part due to ice-rich permafrost thaw following clearing. We are studying the long-term effects of permafrost thaw following initial clearing for cultivation purposes. We are working with the current landowners to provide information regarding ongoing thermokarst development on the property and to conduct studies in reforested portions of the land area to understand land clearing and reforestation on permafrost-affected soils. In this regard, we have acquired very high resolution light detection and ranging (LiDAR) data and digital photography from a DJI M300 drone using a Zenmuse L1. The Zenmuse L1 integrates a Livox Lidar module, a high-accuracy inertial measurement units (IMU), and a camera with a 1-inch CMOS on a 3-axis stabilized gimbal. The drone was configured to fly in real-time kinematic (RTK) mode at an altitude of 60 meters above ground level using the DJI D-RTK 2 base station. Data was acquired using a 50% sidelap and a 70% frontlap. Additional ground control was established with a Leica GS18 global navigation satellite system (GNSS) and all data have been post-processed to World Geodetic System 1984 (WGS84) universal transverse mercator (UTM) Zone 6 North using ellipsoid heights. Data outputs include a two-class classified LiDAR point cloud, digital surface model, digital terrain model, and an orthophoto mosaic. Image acquisition occurred on 10 September 2023. The input images are available for download at http://arcticdata.io/data/10.18739/A2PC2TB1T. 
    more » « less
  8. This dataset supports the findings of the research paper submitted to the journal Geophysical Research Letters that documents the rapid thaw of saline permafrost below a shallow thermokarst lake near Utqiagvik, Alaska. The lake, East Twin Lake, is located in the Barrow Environmental Observatory. We conducted repeat drilling-based surveys at East Twin Lake in the Barrow Environmental Observatory near Utqiagvik, Alaska between 2008 and 2023. These field data were integrated with transient electromagnetic (TEM) near-surface geophysics soundings in 2016 and 2022 and analysis of a time-series of wintertime Synthetic Aperture Radar (SAR) satellite imagery from 2015 to 2023 to assess changes in lake and sub-lake properties. Finally, we assessed the impact of thawing saline permafrost on shore erosion by quantifying a regime shift in the lateral expansion rate of East Twin Lake between 1948 and 2022. The datasets consist of a CSV file with the point measurements from the drilling campaign, processed TEM data along with the script, a table of SAR backscatter values extracted for three lakes, and a table with lake expansion rates for East Twin Lake. 
    more » « less