skip to main content


Search for: All records

Creators/Authors contains: "Ward, Logan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent studies suggested that these models could be useful in chemistry and materials science. To explore these possibilities, we organized a hackathon. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines. 
    more » « less
    Free, publicly-accessible full text available August 8, 2024
  3. Users running dynamic workflows in distributed systems usually have inadequate expertise to correctly size the allocation of resources (cores, memory, disk) to each task due to the difficulty in uncovering the obscure yet important correlation between tasks and their resource consumption. Thus, users typically pay little attention to this problem of allocation sizing and either simply apply an error-prone upper bound of resource allocation to all tasks, or delegate this responsibility to underlying distributed systems, resulting in substantial waste from allocated yet unused resources. In this paper, we will first show that tasks performing different work may have significantly different resource consumption. We will then show that exploiting the heterogeneity of tasks is a desirable way to reveal and predict the relationship between tasks and their resource consumption, reduce waste from resource misallocation, increase tasks' consumption efficiency, and incentivize users' cooperation. We have developed two info-aware allocation strategies capitalizing on this characteristic and will show their effectiveness through simulations on two modern applications with dynamic workflows and five synthetic datasets of resource consumption. Our results show that info-aware strategies can cut down up to 98.7% of the total waste incurred by a best-effort strategy, and increase the efficiency in resource consumption of each task on average anywhere up to 93.9%. 
    more » « less
  4. null (Ed.)
  5. Facilitating the application of machine learning (ML) to materials science problems requires enhancing the data ecosystem to enable discovery and collection of data from many sources, automated dissemination of new data across the ecosystem, and the connecting of data with materials-specific ML models. Here, we present two projects, the Materials Data Facility (MDF) and the Data and Learning Hub for Science (DLHub), that address these needs. We use examples to show how MDF and DLHub capabilities can be leveraged to link data with ML models and how users can access those capabilities through web and programmatic interfaces. 
    more » « less
  6. Recent studies illustrate how machine learning (ML) can be used to bypass a core challenge of molecular modeling: the trade-off between accuracy and computational cost. Here, we assess multiple ML approaches for predicting the atomization energy of organic molecules. Our resulting models learn the difference between low-fidelity, B3LYP, and high-accuracy, G4MP2, atomization energies and predict the G4MP2 atomization energy to 0.005 eV (mean absolute error) for molecules with less than nine heavy atoms (training set of 117,232 entries, test set 13,026) and 0.012 eV for a small set of 66 molecules with between 10 and 14 heavy atoms. Our two best models, which have different accuracy/speed trade-offs, enable the efficient prediction of G4MP2-level energies for large molecules and are available through a simple web interface. 
    more » « less