Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Our understanding of Arctic sea ice and its wide-ranging influence is deeply rooted in observation. Advancing technologies have profoundly improved our ability to observe Arctic sea ice, document its processes and properties, and describe atmosphere-ice-ocean interactions with unprecedented detail. Yet, our progress toward better understanding the Arctic sea ice system is mired by the stark disparities between observations that tend to be siloed by method, scientific discipline, and application. This article presents a review and philosophical design for observing sea ice and accelerating our understanding of the Arctic sea ice system. We give a brief history of Arctic sea ice observations and showcase the 2018 melt season within the context of five observational themes: spatial heterogeneity, temporal variability, cross-disciplinary science, scalability, and retrieval uncertainty. We synthesize buoy data, optical imagery, satellite retrievals, and airborne measurements to demonstrate how disparate data sets can be woven together to transcend issues of observational scale. The results show that there are limitations to interpreting any single data set alone. However, many of these limitations can be surmounted by combining observations that cross spatial and temporal scales. We conclude the article with pathways toward enhanced coordination across observational platforms in order to: (1) optimize themore »
-
Accurate multidecadal radiative flux records are vital to understand Arctic amplification and constrain climate model uncertainties. Uncertainty in the NASA Clouds and the Earth’s Radiant Energy System (CERES)-derived irradiances is larger over sea ice than any other surface type and comes from several sources. The year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic provides a rare opportunity to explore uncertainty in CERES-derived radiative fluxes. First, a systematic and statistically robust assessment of surface shortwave and longwave fluxes was conducted using in situ measurements from MOSAiC flux stations. The CERES Synoptic 1degree (SYN1deg) product overestimates the downwelling shortwave flux by +11.40 Wm–2 and underestimates the upwelling shortwave flux by –15.70 Wm–2 and downwelling longwave fluxes by –12.58 Wm–2 at the surface during summer. In addition, large differences are found in the upwelling longwave flux when the surface approaches the melting point (approximately 0°C). The biases in downwelling shortwave and longwave fluxes suggest that the atmosphere represented in CERES is too optically thin. The large negative bias in upwelling shortwave flux can be attributed in large part to lower surface albedo (–0.15) in satellite footprint relative to surface sensors. Additionally, the results show thatmore »
-
Free, publicly-accessible full text available April 1, 2023
-
During the Arctic melt season, relatively fresh meltwater layers can accumulate under sea ice as a result of snow and ice melt, far from terrestrial freshwater inputs. Such under-ice meltwater layers, sometimes referred to as under-ice melt ponds, have been suggested to play a role in the summer sea ice mass balance both by isolating the sea ice from saltier water below, and by driving formation of ‘false bottoms’ below the sea ice. Such layers form at the interface of the fresher under-ice layer and the colder, saltier seawater below. During the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) expedition in the Central Arctic, we observed the presence of under-ice meltwater layers and false bottoms throughout July 2020 at primarily first-year ice locations. Here, we examine the distribution, prevalence, and drivers of under-ice ponds and the resulting false bottoms during this period. The average thickness of observed false bottoms and freshwater equivalent of under-ice meltwater layers was 0.08 m, with false bottom ice comprised of 74–87% FYI melt and 13–26% snow melt. Additionally, we explore these results using a 1D model to understand the role of dynamic influences on decoupling the ice from the seawater below.more »
-
The magnitude, spectral composition, and variability of the Arctic sea ice surface albedo are key to understanding and numerically simulating Earth’s shortwave energy budget. Spectral and broadband albedos of Arctic sea ice were spatially and temporally sampled by on-ice observers along individual survey lines throughout the sunlit season (April–September, 2020) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The seasonal evolution of albedo for the MOSAiC year was constructed from spatially averaged broadband albedo values for each line. Specific locations were identified as representative of individual ice surface types, including accumulated dry snow, melting snow, bare and melting ice, melting and refreezing ponded ice, and sediment-laden ice. The area-averaged seasonal progression of total albedo recorded during MOSAiC showed remarkable similarity to that recorded 22 years prior on multiyear sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) expedition. In accord with these and other previous field efforts, the spectral albedo of relatively thick, snow-free, melting sea ice shows invariance across location, decade, and ice type. In particular, the albedo of snow-free, melting seasonal ice was indistinguishable from that of snow-free, melting second-year ice, suggesting that the highly scattering surface layer that formsmore »
-
Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51%more »
-
Sea ice thickness is a key parameter in the polar climate and ecosystem. Thermodynamic and dynamic processes alter the sea ice thickness. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provided a unique opportunity to study seasonal sea ice thickness changes of the same sea ice. We analyzed 11 large-scale (∼50 km) airborne electromagnetic sea thickness and surface roughness surveys from October 2019 to September 2020. Data from ice mass balance and position buoys provided additional information. We found that thermodynamic growth and decay dominated the seasonal cycle with a total mean sea ice thickness increase of 1.4 m (October 2019 to June 2020) and decay of 1.2 m (June 2020 to September 2020). Ice dynamics and deformation-related processes, such as thin ice formation in leads and subsequent ridging, broadened the ice thickness distribution and contributed 30% to the increase in mean thickness. These processes caused a 1-month delay between maximum thermodynamic sea ice thickness and maximum mean ice thickness. The airborne EM measurements bridged the scales from local floe-scale measurements to Arctic-wide satellite observations and model grid cells. The spatial differences in mean sea ice thickness between the Central Observatory (<10 km) of MOSAiC andmore »
-
Abstract. On Arctic sea ice, the melt of snow and sea ice generate asummertime flux of fresh water to the upper ocean. The partitioning of thismeltwater to storage in melt ponds and deposition in the ocean hasconsequences for the surface heat budget, the sea ice mass balance, andprimary productivity. Synthesizing results from the 1997–1998 SHEBA fieldexperiment, we calculate the sources and sinks of meltwater produced on amultiyear floe during summer melt. The total meltwater input to the systemfrom snowmelt, ice melt, and precipitation from 1 June to 9 August wasequivalent to a layer of water 80 cm thick over the ice-covered and openocean. A total of 85 % of this meltwater was deposited in the ocean, and only 15 %of this meltwater was stored in ponds. The cumulative contributions ofmeltwater input to the ocean from drainage from the ice surface and bottommelting were roughly equal.
-
Abstract. We assess the influence of snow on sea ice in experimentsusing the Community Earth System Model version 2 for a preindustrial and a2xCO2 climate state. In the preindustrial climate, we find that increasingsimulated snow accumulation on sea ice results in thicker sea ice and acooler climate in both hemispheres. The sea ice mass budget response differsfundamentally between the two hemispheres. In the Arctic, increasing snowresults in a decrease in both congelation sea ice growth and surface sea icemelt due to the snow's impact on conductive heat transfer and albedo,respectively. These factors dominate in regions of perennial ice but have asmaller influence in seasonal ice areas. Overall, the mass budget changeslead to a reduced amplitude in the annual cycle of ice thickness. In theAntarctic, with increasing snow, ice growth increases due to snow–iceformation and is balanced by larger basal ice melt, which primarily occursin regions of seasonal ice. In a warmer 2xCO2 climate, the Arctic sea icesensitivity to snow depth is small and reduced relative to that of thepreindustrial climate. In contrast, in the Antarctic, the sensitivity tosnow on sea ice in the 2xCO2 climate is qualitatively similar to thesensitivity in the preindustrial climate. These results underscore theimportance of accuratelymore »
-
Abstract
This dataset contains upper ocean temperature and salinity profiles made during July – September, 2020 as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the Central Arctic. The primary aim of these profiles was to capture the stratification of the upper ocean due to meltwater input throughout the summer melt season and the transition to fall freeze-up. The dataset includes data from two instruments: (i) YSI probe, and (ii) Sontek Castaway. The YSI probe was used to take point measurements of temperature and salinity, allowing for more fine-scale profiles in the upper couple of meters. The Sontek Castaway is a small conductivity, temperature, and depth (CTD) device that was used to make profiles over the upper 10s of meters, here typically in complement to the YSI observations, and are processed to 15 centimeters (cm) vertical resolution. Profiles were made in two primary locations: (i) near-surface of leads surrounding the sea ice floe, using both YSI and Castaway, and (ii) upper ocean directly beneath the sea ice, typically using YSI only. A small number of additional observations were made in coincident melt ponds and the upper ocean directly underneath. Details of collection and