skip to main content

Search for: All records

Creators/Authors contains: "Wei, Ermin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 16, 2024
  2. In this paper, we study a fresh data acquisition problem to acquire fresh data and optimize the age-related performance when strategic data sources have private market information. We consider an information update system in which a destination acquires, and pays for, fresh data updates from a source. The destination incurs an age-related cost, modeled as a general increasing function of the age-of-information (AoI). The source is strategic and incurs a sampling cost, which is its private information and may not be truthfully reported to the destination. To this end, we design an optimal (economic) mechanism for timely information acquisition by generalizing Myerson's seminal work. The goal is to minimize the sum of the destination's age-related cost and its payment to the source, while ensuring that the source truthfully reports its private information and will voluntarily participate in the mechanism. Our results show that, under some distributions of the source's cost, our proposed optimal mechanism can lead to an unbounded benefit, compared against a benchmark that naively trusts the source's report and thus incentivizes its maximal over-reporting. 
    more » « less
  3. We consider the setting where the nodes in an undirected, connected network collaborate to solve a shared objective modeled as the sum of smooth functions. We assume that each summand is privately known by a unique node. NEAR-DGD is a distributed first order method which permits adjusting the amount of communication between nodes relative to the amount of computation performed locally in order to balance convergence accuracy and total application cost. In this work, we generalize the convergence properties of a variant of NEAR-DGD from the strongly convex to the nonconvex case. Under mild assumptions, we show convergence to minimizers of a custom Lyapunov function. Moreover, we demonstrate that the gap between those minimizers and the second order stationary solutions of the original problem can become arbitrarily small depending on the choice of algorithm parameters. Finally, we accompany our theoretical analysis with a numerical experiment to evaluate the empirical performance of NEAR-DGD in the nonconvex setting. 
    more » « less
  4. null (Ed.)