skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wei, Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work presents a morpho-hydrodynamic model and a numerical approximation designed for the fast and accurate simulation of sediment movement associated with extreme events, such as tsunamis. The model integrates the well-established hydrostatic shallow-water equations with a transport equation for the moving bathymetry that relies on a bedload transport function. Subsequently, this model is discretized using the path-conservative finite volume framework to yield a numerical scheme that is not only fast but also second-order accurate and well-balanced for the lake-at-rest solution. The numerical discretization separates the hydrodynamic and morphodynamic components of the model but leverages the eigenstructure information to evolve the morphologic part in an upwind fashion, preventing spurious oscillations. The study includes various numerical experiments, incorporating comparisons with laboratory experimental data and field surveys. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Active feedback control in magnetic confinement fusion devices is desirable to mitigate plasma instabilities and enable robust operation. Optical high-speed cameras provide a powerful, non-invasive diagnostic and can be suitable for these applications. In this study, we process high-speed camera data, at rates exceeding 100 kfps, on in situ field-programmable gate array (FPGA) hardware to track magnetohydrodynamic (MHD) mode evolution and generate control signals in real time. Our system utilizes a convolutional neural network (CNN) model, which predicts the n = 1 MHD mode amplitude and phase using camera images with better accuracy than other tested non-deep-learning-based methods. By implementing this model directly within the standard FPGA readout hardware of the high-speed camera diagnostic, our mode tracking system achieves a total trigger-to-output latency of 17.6 μs and a throughput of up to 120 kfps. This study at the High Beta Tokamak-Extended Pulse (HBT-EP) experiment demonstrates an FPGA-based high-speed camera data acquisition and processing system, enabling application in real-time machine-learning-based tokamak diagnostic and control as well as potential applications in other scientific domains. 
    more » « less
  3. Abstract A key challenge in realizing practical quantum networks for long-distance quantum communication involves robust entanglement between quantum memory nodes connected by fibre optical infrastructure1–3. Here we demonstrate a two-node quantum network composed of multi-qubit registers based on silicon-vacancy (SiV) centres in nanophotonic diamond cavities integrated with a telecommunication fibre network. Remote entanglement is generated by the cavity-enhanced interactions between the electron spin qubits of the SiVs and optical photons. Serial, heralded spin-photon entangling gate operations with time-bin qubits are used for robust entanglement of separated nodes. Long-lived nuclear spin qubits are used to provide second-long entanglement storage and integrated error detection. By integrating efficient bidirectional quantum frequency conversion of photonic communication qubits to telecommunication frequencies (1,350 nm), we demonstrate the entanglement of two nuclear spin memories through 40 km spools of low-loss fibre and a 35-km long fibre loop deployed in the Boston area urban environment, representing an enabling step towards practical quantum repeaters and large-scale quantum networks. 
    more » « less
  4. A quantum network node combining a long-lived memory, robust optical interface, and integrated error detection is realized. 
    more » « less