Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent observations and simulations indicate that solar flares undergo extremely complex 3D evolution, making 3D particle transport models essential for understanding electron acceleration and interpreting flare emissions. In this study, we investigate this problem by solving Parker’s transport equation with 3D MHD simulations of solar flares. By examining energy conversion in the 3D system, we evaluate the roles of different acceleration mechanisms, including reconnection current sheet (CS), termination shock (TS), and supra-arcade downflows (SADs). We find that large-amplitude turbulent fluctuations are generated and sustained in the 3D system. The model results demonstrate that a significant number of electrons are accelerated to hundreds of keV and even a few MeV, forming power-law energy spectra. These energetic particles are widely distributed, with concentrations at the TS and in the flare looptop region, consistent with results derived from recent hard X-ray (HXR) and microwave (MW) observations. By selectively turning particle acceleration on or off in specific regions, we find that the CS and SADs effectively accelerate electrons to several hundred keV, while the TS enables further acceleration to MeV. However, no single mechanism can independently account for the significant number of energetic electrons observed. Instead, the mechanisms work synergistically to produce a large population of accelerated electrons. Our model provides spatially and temporally resolved electron distributions in the whole flare region and at the flare footpoints, enabling synthetic HXR and MW emission modeling for comparison with observations. These results offer important insights into electron acceleration and transport in 3D solar flare regions.more » « lessFree, publicly-accessible full text available September 29, 2026
-
Abstract Solar flare above-the-loop-top (ALT) regions are vital for understanding solar eruptions and fundamental processes in plasma physics. Recent advances in three-dimensional (3D) magnetohydrodynamic (MHD) simulations have revealed unprecedented details on turbulent flows and MHD instabilities in flare ALT regions. Here, for the first time, we examine the observable anisotropic properties of turbulent flows in ALT by applying a flow-tracking algorithm on narrow-band extreme-ultraviolet images that are observed from the face-on viewing perspective. First, the results quantitatively confirm the previous observation that vertical motions dominate and that the anisotropic flows are widely distributed in the entire ALT region with the contribution from both upflows and downflows. Second, the anisotropy shows height-dependent features, with the most substantial anisotropy appearing at a certain middle height in ALT, which agrees well with the MHD modeling results where turbulent flows are caused by Rayleigh–Taylor-type instabilities in the ALT region. Finally, our finding suggests that supra-arcade downflows (SADs), the most prominently visible dynamical structures in ALT regions, are only one aspect of turbulent flows. Among these turbulent flows, we also report the antisunward-moving underdense flows that might develop due to MHD instabilities, as suggested by previous 3D flare models. Our results indicate that the entire flare fan displays group behavior of turbulent flows where the observational bright spikes and relatively dark SADs exhibit similar anisotropic characteristics.more » « lessFree, publicly-accessible full text available April 25, 2026
-
Abstract When and where the magnetic field energy is released and converted in eruptive solar flares remains an outstanding topic in solar physics. To shed light on this question, here we report multiwavelength observations of a C9.4-class eruptive limb flare that occurred on 2017 August 20. The flare, accompanied by a magnetic flux rope eruption and a white light coronal mass ejection, features three post-impulsive X-ray and microwave bursts immediately following its main impulsive phase. For each burst, both microwave and X-ray imaging suggest that the nonthermal electrons are located in the above-the-loop-top region. Interestingly, contrary to many other flares, the peak flux of the three post-impulsive microwave and X-ray bursts shows an increase for later bursts. Spectral analysis reveals that the sources have a hardening spectral index, suggesting a more efficient electron acceleration into the later post-impulsive bursts. We observe a positive correlation between the acceleration of the magnetic flux rope and the nonthermal energy release during the post-impulsive bursts in the same event. Intriguingly, different from some other eruptive events, this correlation does not hold for the main impulse phase of this event, which we interpret as energy release due to the tether-cutting reconnection before the primary flux rope acceleration occurs. In addition, using footpoint brightenings at conjugate flare ribbons, a weakening reconnection guide field is inferred, which may also contribute to the hardening of the nonthermal electrons during the post-impulsive phase.more » « less
-
Abstract Extreme-ultraviolet late phase (ELP) refers to the second extreme-ultraviolet (EUV) radiation enhancement observed in certain solar flares, which usually occurs tens of minutes to several hours after the peak of soft X-ray emission. The coronal loop system that hosts the ELP emission is often different from the main flaring arcade, and the enhanced EUV emission therein may imply an additional heating process. However, the origin of the ELP remains rather unclear. Here we present the analysis of a C1.4 flare that features such an ELP, which is also observed in microwave wavelengths by the Expanded Owens Valley Solar Array. Similar to the case of the ELP, we find a gradual microwave enhancement that occurs about 3 minutes after the main impulsive phase microwave peaks. Radio sources coincide with both foot points of the ELP loops and spectral fits on the time-varying microwave spectra demonstrate a clear deviation of the electron distribution from the Maxwellian case, which could result from injected nonthermal electrons or nonuniform heating to the footpoint plasma. We further point out that the delayed microwave enhancement suggests the presence of an additional heating process, which could be responsible for the evaporation of heated plasma that fills the ELP loops, producing the prolonged ELP emission.more » « less
-
Abstract Magnetic flux ropes are the centerpiece of solar eruptions. Direct measurements for the magnetic field of flux ropes are crucial for understanding the triggering and energy release processes, yet they remain heretofore elusive. Here we report microwave imaging spectroscopy observations of an M1.4-class solar flare that occurred on 2017 September 6, using data obtained by the Expanded Owens Valley Solar Array. This flare event is associated with a partial eruption of a twisted filament observed in Hαby the Goode Solar Telescope at the Big Bear Solar Observatory. The extreme ultraviolet (EUV) and X-ray signatures of the event are generally consistent with the standard scenario of eruptive flares, with the presence of double flare ribbons connected by a bright flare arcade. Intriguingly, this partial eruption event features a microwave counterpart, whose spatial and temporal evolution closely follow the filament seen in Hαand EUV. The spectral properties of the microwave source are consistent with nonthermal gyrosynchrotron radiation. Using spatially resolved microwave spectral analysis, we derive the magnetic field strength along the filament spine, which ranges from 600 to 1400 Gauss from its apex to the legs. The results agree well with the nonlinear force-free magnetic model extrapolated from the preflare photospheric magnetogram. We conclude that the microwave counterpart of the erupting filament is likely due to flare-accelerated electrons injected into the filament-hosting magnetic flux rope cavity following the newly reconnected magnetic field lines.more » « less
An official website of the United States government
