skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Episodic Energy Release during the Main and Post-impulsive Phases of a Solar Flare
Abstract When and where the magnetic field energy is released and converted in eruptive solar flares remains an outstanding topic in solar physics. To shed light on this question, here we report multiwavelength observations of a C9.4-class eruptive limb flare that occurred on 2017 August 20. The flare, accompanied by a magnetic flux rope eruption and a white light coronal mass ejection, features three post-impulsive X-ray and microwave bursts immediately following its main impulsive phase. For each burst, both microwave and X-ray imaging suggest that the nonthermal electrons are located in the above-the-loop-top region. Interestingly, contrary to many other flares, the peak flux of the three post-impulsive microwave and X-ray bursts shows an increase for later bursts. Spectral analysis reveals that the sources have a hardening spectral index, suggesting a more efficient electron acceleration into the later post-impulsive bursts. We observe a positive correlation between the acceleration of the magnetic flux rope and the nonthermal energy release during the post-impulsive bursts in the same event. Intriguingly, different from some other eruptive events, this correlation does not hold for the main impulse phase of this event, which we interpret as energy release due to the tether-cutting reconnection before the primary flux rope acceleration occurs. In addition, using footpoint brightenings at conjugate flare ribbons, a weakening reconnection guide field is inferred, which may also contribute to the hardening of the nonthermal electrons during the post-impulsive phase.  more » « less
Award ID(s):
1654382 2130832 2108853 1954737 2204384 1752268
PAR ID:
10497678
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
964
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 174
Size(s):
Article No. 174
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic flux ropes are the centerpiece of solar eruptions. Direct measurements for the magnetic field of flux ropes are crucial for understanding the triggering and energy release processes, yet they remain heretofore elusive. Here we report microwave imaging spectroscopy observations of an M1.4-class solar flare that occurred on 2017 September 6, using data obtained by the Expanded Owens Valley Solar Array. This flare event is associated with a partial eruption of a twisted filament observed in Hαby the Goode Solar Telescope at the Big Bear Solar Observatory. The extreme ultraviolet (EUV) and X-ray signatures of the event are generally consistent with the standard scenario of eruptive flares, with the presence of double flare ribbons connected by a bright flare arcade. Intriguingly, this partial eruption event features a microwave counterpart, whose spatial and temporal evolution closely follow the filament seen in Hαand EUV. The spectral properties of the microwave source are consistent with nonthermal gyrosynchrotron radiation. Using spatially resolved microwave spectral analysis, we derive the magnetic field strength along the filament spine, which ranges from 600 to 1400 Gauss from its apex to the legs. The results agree well with the nonlinear force-free magnetic model extrapolated from the preflare photospheric magnetogram. We conclude that the microwave counterpart of the erupting filament is likely due to flare-accelerated electrons injected into the filament-hosting magnetic flux rope cavity following the newly reconnected magnetic field lines. 
    more » « less
  2. How impulsive solar energetic particle (SEP) events are produced by magnetic-reconnection-driven processes during solar flares remains an outstanding question. Here we report a short-duration SEP event associated with an X-class eruptive flare on 2021 July 3, using a combination of remote sensing observations and in situ measurements. The in situ SEPs were recorded by multiple spacecraft including the Parker Solar Probe. The hard X-ray (HXR) light curve exhibits two impulsive periods. The first period is characterized by a single peak with a rapid rise and decay, while the second period features a more gradual HXR light curve with a harder spectrum. Such observation is consistent with in situ measurements: the energetic electrons were first released during the early impulsive phase when the eruption was initiated. The more energetic in situ electrons were released several minutes later during the second period of the impulsive phase when the eruption was well underway. This second period of energetic electron acceleration also coincides with the release of in situ energetic protons and the onset of an interplanetary type III radio burst. We conclude that these multimessenger observations favor a two-phase particle acceleration scenario: the first, less energetic electron population was produced during the initial reconnection that triggers the flare eruption, and the second, more energetic electron population was accelerated in the region above the loop-top below a well-developed, large-scale reconnection current sheet induced by the eruption. 
    more » « less
  3. Abstract A number of double coronal X-ray sources have been observed during solar flares by RHESSI, where the two sources reside at different sides of the inferred reconnection site. However, where and how these X-ray-emitting electrons are accelerated remains unclear. Here we present the first model of the double coronal hard X-ray (HXR) sources, where electrons are accelerated by a pair of termination shocks driven by bidirectional fast reconnection outflows. We model the acceleration and transport of electrons in the flare region by numerically solving the Parker transport equation using velocity and magnetic fields from the macroscopic magnetohydrodynamic simulation of a flux rope eruption. We show that electrons can be efficiently accelerated by the termination shocks and high-energy electrons mainly concentrate around the two shocks. The synthetic HXR emission images display two distinct sources extending to >100 keV below and above the reconnection region, with the upper source much fainter than the lower one. The HXR energy spectra of the two coronal sources show similar spectral slopes, consistent with the observations. Our simulation results suggest that the flare termination shock can be a promising particle acceleration mechanism in explaining the double-source nonthermal emissions in solar flares. 
    more » « less
  4. Context.The 2003 October 28 (X17.2) eruptive flare was a unique event. The coronal electric field and theπ-decayγ-ray emission flux displayed the highest values ever inferred for solar flares. Aims.Our aim is to reveal physical links between the magnetic reconnection process, energy release, and acceleration of electrons and ions to high energies in the chain of the magnetic energy transformations in the impulsive phase of the solar flare. Methods.The global reconnection rate,φ̇(t), and the local reconnection rate (coronal electric field strength),Ec(r, t), were calculated from flare ribbon separation in Hαfiltergrams and photospheric magnetic field maps. Then, HXRs measured by CORONAS-F/SPR-N and the derivative of the GOES SXR flux,İSXR(t) were used as proxies of the flare energy release evolution. The flare early rise phase, main raise phase, and main energy release phase were defined based on temporal profiles of the above proxies. The available results of INTEGRAL and CORONAS-F/SONG observations were combined with Konus-Wind data to quantify the time behavior of electron and proton acceleration. Promptγ-ray lines and delayed 2.2 MeV line temporal profiles observed with Konus-Wind and INTEGRAL/SPI were used to detect and quantify the nuclei with energies of 10−70 MeV. Results.The magnetic-reconnection rates,φ̇(t) andEc(r, t), follow a common evolutionary pattern with the proxies of the flare energy released into high-energy electrons. The global and local reconnection rates reach their peaks at the end of the main rise phase of the flare. The spectral analysis of the high-energyγ-ray emission revealed a close association between the acceleration process efficiency and the reconnection rates. High-energy bremsstrahlung continuum and narrowγ-ray lines were observed in the main rise phase whenEc(r, t) of the positive (negative) polarity reached values of ∼120 V cm−1(∼80 V cm−1). In the main energy release phase, the upper energy of the bremsstrahlung spectrum was significantly reduced and the pion-decayγ-ray emission appeared abruptly. We discuss the reasons why the change of the acceleration regime occurred along with the large-scale magnetic field restructuration of this flare. Conclusions.The similarities between the proxies of the flare energy release withφ̇(t) andEc(r, t) in the flare’s main rise phase are in accordance with the reconnection models. We argue that the main energy release and proton acceleration up to subrelativistic energies began just when the reconnection rate was going through the maximum, that is, following a major change of the flare topology. 
    more » « less
  5. Abstract The X8.2-class limb flare on 2017 September 10 is among the best studied solar flare events owing to its great similarity to the standard flare model and the broad coverage by multiple spacecraft and ground-based observations. These multiwavelength observations indicate that electron acceleration and transport are efficient in the reconnection and flare looptop regions. However, there lacks a comprehensive model for explaining and interpreting the multi-faceted observations. In this work, we model the electron acceleration and transport in the early impulsive phase of this flare. We solve the Parker transport equation that includes the primary acceleration mechanism during magnetic reconnection in the large-scale flare region modeled by MHD simulations. We find that electrons are accelerated up to several MeV and fill a large volume of the reconnection region, similar to the observations shown in microwaves. The electron spatial distribution and spectral shape in the looptop region agree well with those derived from the microwave and hard X-ray emissions before magnetic islands grow large and dominate the acceleration. Future emission modelings using the electron maps will enable direct comparison with microwave and hard X-ray observations. These results shed new light on the electron acceleration and transport in a broad region of solar flares within a data-constrained realistic flare geometry. 
    more » « less