skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weitzman, Chava L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pirofski, Liise-anne (Ed.)
    ABSTRACT Free-living hosts encounter pathogens at a wide range of frequencies and concentrations, including low doses that are largely aclinical, creating a varied landscape of exposure history and reinfection likelihood. While several studies show that higher priming doses result in stronger immunological protection against reinfection, it remains unknown how the reinfection challenge dose and priming dose interact to determine the likelihood and severity of reinfection. We manipulated both priming and challenge doses of Mycoplasma gallisepticum , which causes mycoplasmal conjunctivitis, in captive house finches ( Haemorhous mexicanus ), to assess reinfection probability and severity. We found a significant interaction between priming and challenge doses on reinfection probability, with the likelihood of reinfection by a high but not a low challenge dose decreasing exponentially at higher priming doses. While this interaction was likely driven by lower average infection probabilities for low-dose versus high-dose challenges, even the highest priming dose provided only negligible protection against reinfection from low-dose challenges. Similarly, pathogen loads during reinfection were significantly reduced with increasing priming doses only for birds reinfected at high but not low doses. We hypothesize that these interactions arise to some degree from fundamental differences in host immune responses across doses, with single low doses only weakly triggering host immune responses. Importantly, our results also demonstrate that reinfections can occur from a variety of exposure doses and across diverse degrees of standing immunity in this system. Overall, our study highlights the importance of considering both initial and subsequent exposure doses where repeated exposure to a pathogen is common in nature. 
    more » « less
  2. Bacterial communities in and on wild hosts are increasingly appreciated for their importance in host health. Through both direct and indirect interactions, bacteria lining vertebrate gut mucosa provide hosts protection against infectious pathogens, sometimes even in distal body regions through immune regulation. In house finches ( Haemorhous mexicanus ), the bacterial pathogen Mycoplasma gallisepticum (MG) causes conjunctivitis, with ocular inflammation mediated by pro- and anti-inflammatory cytokines and infection triggering MG-specific antibodies. Here, we tested the role of gut bacteria in host responses to MG by using oral antibiotics to perturb bacteria in the gut of captive house finches prior to experimental inoculation with MG. We found no clear support for an impact of gut bacterial disruption on conjunctival pathology, MG load, or plasma antibody levels. However, there was a non-significant trend for birds with intact gut communities to have greater conjunctival pathology, suggesting a possible impact of gut bacteria on pro-inflammatory cytokine stimulation. Using 16S bacterial rRNA amplicon sequencing, we found dramatic differences in cloacal bacterial community composition between captive, wild-caught house finches in our experiment and free-living finches from the same population, with lower bacterial richness and core communities composed of fewer genera in captive finches. We hypothesize that captivity may have affected the strength of results in this experiment, necessitating further study with this consideration. The abundance of anthropogenic impacts on wildlife and their bacterial communities, alongside the emergence and spread of infectious diseases, highlights the importance of studies addressing the role of commensal bacteria in health and disease, and the consequences of gut bacterial shifts on wild hosts. 
    more » « less
  3. ABSTRACT The commensal microbes inhabiting a host tissue can interact with invading pathogens and host physiology in ways that alter pathogen growth and disease manifestation. Prior work in house finches (Haemorhous mexicanus) found that resident ocular microbiomes were protective against conjunctival infection and disease caused by a relatively high dose of Mycoplasma gallisepticum. Here, we used wild-caught house finches to experimentally examine whether protective effects of the resident ocular microbiome vary with the dose of invading pathogen. We hypothesized that commensal protection would be strongest at low M. gallisepticum inoculation doses because the resident microbiome would be less disrupted by invading pathogen. Our five M. gallisepticum dose treatments were fully factorial with an antibiotic treatment to perturb resident microbes just prior to M. gallisepticum inoculation. Unexpectedly, we found no indication of protective effects of the resident microbiome at any pathogen inoculation dose, which was inconsistent with the prior work. The ocular bacterial communities at the beginning of our experiment differed significantly from those previously reported in local wild-caught house finches, likely causing this discrepancy. These variable results underscore that microbiome-based protection in natural systems can be context dependent, and natural variation in community composition may alter the function of resident microbiomes in free-living animals. 
    more » « less
  4. Kuo, Chih-Horng (Ed.)
    Mycoplasma agassizii is a common cause of upper respiratory tract disease in Mojave desert tortoises ( Gopherus agassizii ). So far, only two strains of this bacterium have been sequenced, and very little is known about its patterns of genetic diversity. Understanding genetic variability of this pathogen is essential to implement conservation programs for their threatened, long-lived hosts. We used next generation sequencing to explore the genomic diversity of 86 cultured samples of M . agassizii collected from mostly healthy Mojave and Sonoran desert tortoises in 2011 and 2012. All samples with enough sequencing coverage exhibited a higher similarity to M . agassizii strain PS6 T (collected in Las Vegas Valley, Nevada) than to strain 723 (collected in Sanibel Island, Florida). All eight genomes with a sequencing coverage over 2x were subjected to multiple analyses to detect single-nucleotide polymorphisms (SNPs). Strikingly, even though we detected 1373 SNPs between strains PS6 T and 723, we did not detect any SNP between PS6 T and our eight samples. Our whole genome analyses reveal that M . agassizii strain PS6 T may be present across a wide geographic extent in healthy Mojave and Sonoran desert tortoises. 
    more » « less
  5. null (Ed.)