skip to main content

Search for: All records

Creators/Authors contains: "Wen, Jiangqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Legumes are of great interest for sustainable agricultural production as they fix atmospheric nitrogen to improve the soil. Medicago truncatula is a well-established model legume, and extensive studies in fundamental molecular, physiological, and developmental biology have been undertaken to translate into trait improvements in economically important legume crops worldwide. However, M. truncatula reference genome was generated in the accession Jemalong A17, which is highly recalcitrant to transformation. M. truncatula R108 is more attractive for genetic studies due to its high transformation efficiency and Tnt1-insertion population resource for functional genomics. The need to perform accurate synteny analysis and comprehensive genome-scale comparisons necessitates a chromosome-length genome assembly for M. truncatula cv. R108. Here, we performed in situ Hi-C (48×) to anchor, order, orient scaffolds, and correct misjoins of contigs in a previously published genome assembly (R108 v1.0), resulting in an improved genome assembly containing eight chromosome-length scaffolds that span 97.62% of the sequenced bases in the input assembly. The long-range physical information data generated using Hi-C allowed us to obtain a chromosome-length ordering of the genome assembly, better validate previous draft misjoins, and provide further insights accurately predicting synteny between A17 and R108 regions corresponding to the known chromosome 4/8 translocation. Furthermore,more »mapping the Tnt1 insertion landscape on this reference assembly presents an important resource for M. truncatula functional genomics by supporting efficient mutant gene identification in Tnt1 insertion lines. Our data provide a much-needed foundational resource that supports functional and molecular research into the Leguminosae for sustainable agriculture and feeding the future.« less
  3. Floral development is one of the model systems for investigating the mechanisms underlying organogenesis in plants. Floral organ identity is controlled by the well-known ABC model, which has been generalized to many flowering plants. Here, we report a previously uncharacterized MYB-like gene,AGAMOUS-LIKE FLOWER(AGLF), involved in flower development in the model legumeMedicago truncatula. Loss-of-function ofAGLFresults in flowers with stamens and carpel transformed into extra whorls of petals and sepals. Compared with the loss-of-function mutant of the class C geneAGAMOUS(MtAG) inM. truncatula, the defects in floral organ identity are similar betweenaglfandmtag, but the floral indeterminacy is enhanced in theaglfmutant. Knockout ofAGLFin the mutants of the class A geneMtAP1or the class B geneMtPIleads to an addition of a loss-of-C-function phenotype, reflecting a conventional relationship ofAGLFwith the canonical A and B genes. Furthermore, we demonstrate thatAGLFactivatesMtAGin transcriptional levels in control of floral organ identity. These data shed light on the conserved and diverged molecular mechanisms that control flower development and morphology among plant species.

  4. Abstract

    Legumes house nitrogen-fixing endosymbiotic rhizobia in specialized polyploid cells within root nodules, which undergo tightly regulated metabolic activity. By carrying out expression analysis of transcripts over time in Medicago truncatula nodules, we found that the circadian clock enables coordinated control of metabolic and regulatory processes linked to nitrogen fixation. This involves the circadian clock-associated transcription factor LATE ELONGATED HYPOCOTYL (LHY), with lhy mutants being affected in nodulation. Rhythmic transcripts in root nodules include a subset of nodule-specific cysteine-rich peptides (NCRs) that have the LHY-bound conserved evening element in their promoters. Until now, studies have suggested that NCRs act to regulate bacteroid differentiation and keep the rhizobial population in check. However, these conclusions came from the study of a few members of this very large gene family that has complex diversified spatio-temporal expression. We suggest that rhythmic expression of NCRs may be important for temporal coordination of bacterial activity with the rhythms of the plant host, in order to ensure optimal symbiosis.