skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wen, Jin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hierarchical surfaces comprised of both microscale and nanoscale structures have been previously studied as a means of targeting multiple length scales to achieve superior pool boiling performance. However, preceding studies have focused almost exclusively on high surface tension working fluids while technologically important low surface tension fluids have remained largely unexplored. In this work, we utilize scalable manufacturing techniques to realize four separate surface types (planar, nanoscale-modified, microscale-modified, and hierarchical) and experimentally determine their respective pool boiling performance within the low surface tension commercial working fluid HFE-7100. A maximum heat transfer enhancement of 125 % at 38 K of superheat was observed for the best performing samples, which interestingly were nanoscale-modified and not those of the hierarchical type. Visual observations via high-speed video analysis of vapor bubble behaviour are utilized to explain the underlying multiphase physics as to why these samples performed so well and future directions for achieving surface optimization across multiple length scales. 
    more » « less
    Free, publicly-accessible full text available January 2, 2025
  2. Abstract This paper presents the results from an international survey that investigated the impacts of the built environment on occupant well-being during the corona virus disease 2019 (COVID-19) pandemic when most professionals were forced to work from home (WFH). The survey was comprised of 81 questions focusing on the respondent's profiles, residences, home indoor environmental quality, health, and home working experiences. A total of 1460 responses were collected from 35 countries, and 1137 of them were considered complete for the analysis. The results suggest that home spatial layout has a significant impact on occupant well-being during WFH since home-life distractions and noises due to the lack of a personal workspace are likely to prevent productive work. Lack of scenic views, inadequate daylighting, and poor acoustics were also reported to be detrimental to occupant productivity and the general WFH experience. It is also revealed from this survey that temperature, relative humidity, and indoor air quality generally have higher satisfaction ratios compared with the indoor lighting and acoustic conditions, and the home layout. Hence, home design for lighting, acoustics, and layout should also receive greater attention in the future. 
    more » « less