skip to main content

Search for: All records

Creators/Authors contains: "Wen, Xidao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing utilization of massive open online courses has significantly expanded global access to formal education. Despite the technology’s promising future, student interaction on MOOCs is still a relatively under-explored and poorly understood topic. This work proposes a multi-level pattern discovery through hierarchical discriminative tensor factorization. We formulate the problem as a hierarchical discriminant subspace learning problem, where the goal is to discover the shared and discriminative patterns with a hierarchical structure. The discovered patterns enable a more effective exploration of the contrasting behaviors of two performance groups. We conduct extensive experiments on several real-world MOOC datasets to demonstrate the effectiveness of our proposed approach. Our study advances the current predictive modeling in MOOCs by providing more interpretable behavioral patterns and linking their relationships with the performance outcome. 
    more » « less
  2. Recently, considerable research attention has been paid to graph embedding, a popular approach to construct representations of vertices in latent space. Due to the curse of dimensionality and sparsity in graphical datasets, this approach has become indispensable for machine learning tasks over large networks. The majority of the existing literature has considered this technique under the assumption that the network is static. However, networks in many applications, including social networks, collaboration networks, and recommender systems, nodes, and edges accrue to a growing network as streaming. A small number of very recent results have addressed the problem of embedding for dynamic networks. However, they either rely on knowledge of vertex attributes, su er high-time complexity or need to be re-trained without closed-form expression. Thus the approach of adapting the existing methods designed for static networks or dynamic networks to the streaming environment faces non-trivial technical challenges. These challenges motivate developing new approaches to the problems of streaming graph embedding. In this paper, we propose a new framework that is able to generate latent representations for new vertices with high e ciency and low complexity under speci ed iteration rounds. We formulate a constrained optimiza- tion problem for the modi cation of the representation resulting from a stream arrival. We show this problem has no closed-form solution and instead develop an online approximation solution. Our solution follows three steps: (1) identify vertices a ected by newly arrived ones, (2) generating latent features for new vertices, and (3) updating the latent features of the most a ected vertices. The new representations are guaranteed to be feasible in the original constrained optimization problem. Meanwhile, the solution only brings about a small change to existing representations and only slightly changes the value of the objective function. Multi-class clas- si cation and clustering on ve real-world networks demonstrate that our model can e ciently update vertex representations and simultaneously achieve comparable or even better performance compared with model retraining. 
    more » « less
  3. Mobile gaming has emerged as a promising market with billion-dollar revenues. A variety of mobile game platforms and services have been developed around the world. One critical challenge for these platforms and services is to understand user churn behavior in mobile games. Accurate churn prediction will bene t many stakeholders such as game developers, advertisers, and platform operators. In this paper, we present the rst large- scale churn prediction solution for mobile games. In view of the common limitations of the state-of-the-art methods built upon traditional machine learning models, we devise a novel semi- supervised and inductive embedding model that jointly learns the prediction function and the embedding function for user- app relationships. We model these two functions by deep neural networks with a unique edge embedding technique that is able to capture both contextual information and relationship dynamics. We also design a novel attributed random walk technique that takes into consideration both topological adjacency and attribute similarities. To evaluate the performance of our solution, we collect real-world data from the Samsung Game Launcher platform that includes tens of thousands of games and hundreds of millions of user-app interactions. The experimental results with this data demonstrate the superiority of our proposed model against existing state-of-the-art methods. 
    more » « less