skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weston, Nathaniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal tidal wetlands and estuaries play important roles in the global carbon budget by contributing to the net withdrawal of CO2from the atmosphere. We quantified the linkages between terrestrial and oceanic systems, marsh-to-bay carbon exchange, and the uptake of CO2from the atmosphere in the wetland-dominated Plum Island Sound (MA, USA) and Duplin River (GA, USA) estuaries. The C budgets revealed that autotrophic marshes [primary production:ecosystem respiration (P:R) ~1.3:1] are tightly coupled to heterotrophic aquatic systems (P:R ~0.6:1). Levels of marsh gross primary production are similar in these systems (865 ± 39 and 768 ± 74 gC m−2year−1in Plum Island and the Duplin, respectively) even though they are in different biogeographic provinces. In contrast to inputs from rivers and coastal oceans, tidal marshes are the dominant source of allochthonous matter that supports heterotrophy in aquatic systems. Dissolved inorganic carbon (DIC) exported from marshes to the coastal ocean was a major flux pathway in the Duplin River; however, there was no evidence of DIC export from Plum Island marshes and only minor export to the ocean. Burial was a sink for 53% of marsh net ecosystem production (NEP) on Plum Island, but only 19% of marsh NEP in the Duplin. Burial was the dominant blue carbon sequestration pathway at Plum Island, whereas in the Duplin, DIC and organic carbon export to the ocean were equally important. Regional- and continental-scale C budgets should better reflect wetland-dominated systems to more accurately characterize their contribution to global CO2sequestration. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. To understand patterns in CO2 partial pressure (PCO2) over time in wetlands’ surface water and porewater, we examined the relationship between PCO2 and land–atmosphere flux of CO2 at the ecosystem scale at 22 Northern Hemisphere wetland sites synthesized through an open call. Sites spanned 6 major wetland types (tidal, alpine, fen, bog, marsh, and prairie pothole/karst), 7 Köppen climates, and 16 different years. Ecosystem respiration (Reco) and gross primary production (GPP), components of vertical CO2 flux, were compared to PCO2, a component of lateral CO2 flux, to determine if photosynthetic rates and soil respiration consistently influence wetland surface and porewater CO2 concentrations across wetlands. Similar to drivers of primary productivity at the ecosystem scale, PCO2 was strongly positively correlated with air temperature (Tair) at most sites. Monthly average PCO2 tended to peak towards the middle of the year and was more strongly related to Reco than GPP. Our results suggest Reco may be related to biologically driven PCO2 in wetlands, but the relationship is site-specific and could be an artifact of differently timed seasonal cycles or other factors. Higher levels of discharge do not consistently alter the relationship between Reco and temperature normalized PCO2. This work synthesizes relevant data and identifies key knowledge gaps in drivers of wetland respiration. 
    more » « less
  3. Abstract Saltwater intrusion is the leading edge of sea-level rise, preceding tidal inundation, but leaving its salty signature far inland. With climate change, saltwater is shifting landward into regions that previously have not experienced or adapted to salinity, leading to novel transitions in biogeochemistry, ecology, and human land uses. We explore these changes and their implications for climate adaptation in coastal ecosystems. Biogeochemical changes, including increases in ionic strength, sulfidation, and alkalinization, have cascading ecological consequences such as upland forest retreat, conversion of freshwater wetlands, nutrient mobilization, and declines in agricultural productivity. We explore the trade-offs among land management decisions in response to these changes and how public policy should shape socioecological transitions in the coastal zone. Understanding transitions resulting from saltwater intrusion—and how to manage them—is vital for promoting coastal resilience. 
    more » « less
  4. Abstract The long‐term stability of coastal wetlands is determined by interactions among sea level, plant primary production, sediment supply, and wetland vertical accretion. Human activities in watersheds have significantly altered sediment delivery from the landscape to the coastal ocean, with declines along much of the U.S. East Coast. Tidal wetlands in coastal systems with low sediment supply may have limited ability to keep pace with accelerating rates of sea‐level rise (SLR). Here, we show that rates of vertical accretion and carbon accumulation in nine tidal wetland systems along the U.S. East Coast from Maine to Georgia can be explained by differences in the rate of relative SLR (RSLR), the concentration of suspended sediments in the rivers draining to the coast, and temperature in the coastal region. Further, we show that rates of vertical accretion have accelerated over the past century by between 0.010 and 0.083 mm yr−2, at roughly the same pace as the acceleration of global SLR. We estimate that rates of carbon sequestration in these wetland soils have accelerated (more than doubling at several sites) along with accelerating accretion. Wetland accretion and carbon accumulation have accelerated more rapidly in coastal systems with greater relative RSLR, higher watershed sediment availability, and lower temperatures. These findings suggest that the biogeomorphic feedback processes that control accretion and carbon accumulation in these tidal wetlands have responded to accelerating RSLR, and that changes to RSLR, watershed sediment supply, and temperature interact to determine wetland vulnerability across broad geographic scales. 
    more » « less