Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Simulating the time evolution of physical systems is pivotal in many scientific and engineering problems. An open challenge in simulating such systems is their multi-resolution dynamics: a small fraction of the system is extremely dynamic, and requires very fine-grained resolution, while a majority of the system is changing slowly and can be modeled by coarser spatial scales. Typical learning-based surrogate models use a uniform spatial scale, which needs to resolve to the finest required scale and can waste a huge compute to achieve required accuracy. We introduced Learning controllable Adaptive simulation for Multiresolution Physics (LAMP) as the first full deep learning-based surrogate model that jointly learns the evolution model and optimizes appropriate spatial resolutions that devote more compute to the highly dynamic regions. LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNNbased actor-critic for learning the policy of spatial refinement and coarsening. We introduced learning techniques that optimize LAMP with weighted sum of error and computational cost as objective, allowing LAMP to adapt to varying relative importance of error vs. computation tradeoff at inference time. We evaluated our method in a 1D benchmark of nonlinear PDEs and a challenging 2D mesh-based simulation. We demonstrated that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error: it achieves an average of 33.7% error reduction for 1D nonlinear PDEs, and outperforms MeshGraphNets + classical Adaptive Mesh Refinement (AMR) in 2D mesh-based simulations.more » « less
-
Virtual reality systems today cannot yet stream immersive, retina-quality virtual reality video over a network. One of the greatest challenges to this goal is the sheer data rates required to transmit retina-quality video frames at high resolutions and frame rates. Recent work has leveraged the decay of visual acuity in human perception in novel gaze-contingent video compression techniques. In this paper, we show that reducing the motion-to-photon latency of a system itself is a key method for improving the compression ratio of gaze-contingent compression. Our key finding is that a client and streaming server system with sub-15ms latency can achieve 5x better compression than traditional techniques while also using simpler software algorithms than previous work.more » « less
-
Computer-generated holography (CGH) holds transformative potential for a wide range of applications, including direct-view, virtual and augmented reality, and automotive display systems. While research on holographic displays has recently made impressive progress, image quality and eye safety of holographic displays are fundamentally limited by the speckle introduced by coherent light sources. Here, we develop an approach to CGH using partially coherent sources. For this purpose, we devise a wave propagation model for partially coherent light that is demonstrated in conjunction with a camera-in-the-loop calibration strategy. We evaluate this algorithm using light-emitting diodes (LEDs) and superluminescent LEDs (SLEDs) and demonstrate improved speckle characteristics of the resulting holograms compared with coherent lasers. SLEDs in particular are demonstrated to be promising light sources for holographic display applications, because of their potential to generate sharp and high-contrast two-dimensional (2D) and 3D images that are bright, eye safe, and almost free of speckle.more » « less
-
Holographic near-eye displays promise unprecedented capabilities for virtual and augmented reality (VR/AR) systems. The image quality achieved by current holographic displays, however, is limited by the wave propagation models used to simulate the physical optics. We propose a neural network-parameterized plane-to-multiplane wave propagation model that closes the gap between physics and simulation. Our model is automatically trained using camera feedback and it outperforms related techniques in 2D plane-to-plane settings by a large margin. Moreover, it is the first network-parameterized model to naturally extend to 3D settings, enabling high-quality 3D computer-generated holography using a novel phase regularization strategy of the complex-valued wave field. The efficacy of our approach is demonstrated through extensive experimental evaluation with both VR and optical see-through AR display prototypes.more » « less
-
Current 3D localization microscopy approaches are fundamentally limited in their ability to image thick, densely labeled specimens. Here, we introduce a hybrid optical–electronic computing approach that jointly optimizes an optical encoder (a set of multiple, simultaneously imaged 3D point spread functions) and an electronic decoder (a neural-network-based localization algorithm) to optimize 3D localization performance under these conditions. With extensive simulations and biological experiments, we demonstrate that our deep-learning-based microscope achieves significantly higher 3D localization accuracy than existing approaches, especially in challenging scenarios with high molecular density over large depth ranges.