skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wham, Drew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Symbiotic mutualisms are essential to ecosystems and numerous species across the tree of life. For reef-building corals, the benefits of their association with endosymbiotic dinoflagellates differ within and across taxa, and nutrient exchange between these partners is influenced by environmental conditions. Furthermore, it is widely assumed that corals associated with symbionts in the genusDurusdiniumtolerate high thermal stress at the expense of lower nutrient exchange to support coral growth. We traced both inorganic carbon (H13CO3) and nitrate (15NO3) uptake by divergent symbiont species and quantified nutrient transfer to the host coral under normal temperatures as well as in colonies exposed to high thermal stress. Colonies representative of diverse coral taxa associated withDurusdinium trenchiiorCladocopiumspp. exhibited similar nutrient exchange under ambient conditions. By contrast, heat-exposed colonies withD. trenchiiexperienced less physiological stress than conspecifics withCladocopiumspp. while high carbon assimilation and nutrient transfer to the host was maintained. This discovery differs from the prevailing notion that these mutualisms inevitably suffer trade-offs in physiological performance. These findings emphasize that many host–symbiont combinations adapted to high-temperature equatorial environments are high-functioning mutualisms; and why their increased prevalence is likely to be important to the future productivity and stability of coral reef ecosystems.

     
    more » « less
  2. Abstract

    Reef‐building corals in the genusPoritesare one of the most important constituents of Indo‐Pacific reefs. Many species within this genus tolerate abnormally warm water and exhibit high specificity for particular kinds of endosymbiotic dinoflagellates that cope with thermal stress better than those living in other corals. Still, during extreme ocean heating, somePoritesexhibit differences in their stress tolerance. While corals have different physiological qualities, it remains unknown whether the stability and performance of these mutualisms is influenced by the physiology and genetic relatedness of their symbionts. We investigated two ubiquitous Pacific reef corals,Porites rusandPorites cylindrica, from warmer inshore and cooler offshore reef systems in Palau. While these corals harbored a similar kind of symbiont in the genusCladocopium(within the ITS2C15 subclade), rapidly evolving genetic markers revealed evolutionarily diverged lineages corresponding to eachPoritesspecies living in each reef habitat. Furthermore, these closely relatedCladocopiumlineages were differentiated by their densities in host tissues, cell volume, chlorophyll concentration, gross photosynthesis, and photoprotective pathways. When assessed using several physiological proxies, these previously undifferentiated symbionts contrasted in their tolerance to thermal stress. Symbionts withinP.cylindricawere relatively unaffected by exposure to 32℃ for 14 days, whereasP.ruscolonies lost substantial numbers of photochemically compromised symbionts. Heating reduced the ability of the offshore symbiont associated withP.rusto translocate carbon to the coral. By contrast, high temperatures enhanced symbiont carbon assimilation and delivery to the coral skeleton of inshoreP.cylindrica. This study indicates that large physiological differences exist even among closely related symbionts, with significant implications for thermal susceptibility among reef‐buildingPorites.

     
    more » « less