Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 2, 2026
- 
            Abstract Most work on how estuarine dynamics impact dissolved oxygen (DO) distributions has focused on tides, but in shallow estuaries with large fetch or small tides, wind can be the primary mixing agent and also drives advection. To investigate how these processes affect DO distributions, an observational study was conducted in the shallow, microtidal Neuse Estuary. Salinity, DO, and velocity profiles were measured at multiple positions along and across the estuary over a 6‐month period. A one‐dimensional model (General Ocean Turbulence Model) provided additional insight into the response of salinity and DO to wind. Salinity and oxygen conservation equation terms were calculated from observations and simulations. Cross‐estuary wind drove lateral circulation and tilted the isohalines, reducing stratification; lateral advection and enhanced mixing reduced vertical gradients and increased the bottom DO. Down‐estuary wind tended to increase the exchange flow and stratification, but concurrently the surface wind‐mixed layer deepened over time. The balance of these processes determined if the water column became fully mixed or remained stratified, and the depth of the pycnocline and oxycline. An expression for steady state surface layer thickness was derived by considering the competition between the horizontal and vertical buoyancy flux, and the predictions agreed well with observations and simulations. Up‐estuary wind inhibited the exchange flow and the combination of advection and mixing homogenized the water column. While these patterns generally held for purely across‐ or along‐channel wind, the response was often more complex as the wind vector varied in orientation and with time.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Abstract Tide gauge water levels are commonly used as a proxy for flood incidence on land. These proxies are useful for projecting how sea‐level rise (SLR) will increase the frequency of coastal flooding. However, tide gauges do not account for land‐based sources of coastal flooding and therefore flood thresholds and the proxies derived from them likely underestimate the current and future frequency of coastal flooding. Here we present a new sensor framework for measuring the incidence of coastal floods that captures both subterranean and land‐based contributions to flooding. The low‐cost, open‐source sensor framework consists of a storm drain water level sensor, roadway camera, and wireless gateway that transmit data in real‐time. During 5 months of deployment in the Town of Beaufort, North Carolina, 24 flood events were recorded. Twenty‐five percent of those events were driven by land‐based sources—rainfall, combined with moderate high tides and reduced capacity in storm drains. Consequently, we find that flood frequency is higher than that suggested by proxies that rely exclusively on tide gauge water levels for determining flood incidence. This finding likely extends to other locations where stormwater networks are at a reduced drainage capacity due to SLR. Our results highlight the benefits of instrumenting stormwater networks directly to capture multiple drivers of coastal flooding. More accurate estimates of the frequency and drivers of floods in low‐lying coastal communities can enable the development of more effective long‐term adaptation strategies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
