skip to main content

Title: Data From the Drain: A Sensor Framework That Captures Multiple Drivers of Chronic Coastal Floods

Tide gauge water levels are commonly used as a proxy for flood incidence on land. These proxies are useful for projecting how sea‐level rise (SLR) will increase the frequency of coastal flooding. However, tide gauges do not account for land‐based sources of coastal flooding and therefore flood thresholds and the proxies derived from them likely underestimate the current and future frequency of coastal flooding. Here we present a new sensor framework for measuring the incidence of coastal floods that captures both subterranean and land‐based contributions to flooding. The low‐cost, open‐source sensor framework consists of a storm drain water level sensor, roadway camera, and wireless gateway that transmit data in real‐time. During 5 months of deployment in the Town of Beaufort, North Carolina, 24 flood events were recorded. Twenty‐five percent of those events were driven by land‐based sources—rainfall, combined with moderate high tides and reduced capacity in storm drains. Consequently, we find that flood frequency is higher than that suggested by proxies that rely exclusively on tide gauge water levels for determining flood incidence. This finding likely extends to other locations where stormwater networks are at a reduced drainage capacity due to SLR. Our results highlight the benefits of instrumenting stormwater networks directly to capture multiple drivers of coastal flooding. More accurate estimates of the frequency and drivers of floods in low‐lying coastal communities can enable the development of more effective long‐term adaptation strategies.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The interaction between storm surge and concurrent precipitation is poorly understood in many coastal regions. This paper investigates the potential compound effects from these two flooding drivers along the coast of China for the first time by using the most comprehensive records of storm surge and precipitation. Statistically significant dependence between flooding drivers exists at the majority of locations that are analysed, but the strength of the correlation varies spatially and temporally and depending on how extreme events are defined. In general, we find higher dependence at the south-eastern tide gauges (TGs) (latitude < 30∘ N) compared to the northern TGs. Seasonal variations in the dependence are also evident. Overall there are more sites with significant dependence in the tropical cyclone (TC) season, especially in the summer. Accounting for past sea level rise further increases the dependence between flooding drivers, and future sea level rise will hence likely lead to an increase in the frequency of compound events. We also find notable differences in the meteorological patterns associated with events where both drivers are extreme versus events where only one driver is extreme. Events with both extreme drivers at south-eastern TG sites are caused by low-pressure systems with similar characteristics across locations, including high precipitable water content (PWC) and strong winds that generate high storm surge. Based on historical disaster damages records of Hong Kong, events with both extreme drivers account for the vast majority of damages and casualties, compared to univariate flooding events, where only one flooding driver occurred. Given the large coastal population and low capacity of drainage systems in many Chinese urban coastal areas, these findings highlight the necessity to incorporate compound flooding and its potential changes in a warming climate into risk assessments, urban planning, and the design of coastal infrastructure and flood defences. 
    more » « less
  2. Abstract

    Coastal urban areas like New York City (NYC) are more vulnerable to urban pluvial flooding particularly because the rapid runoff from extreme rainfall events can be further compounded by the co-occurrence of high sea-level conditions either from tide or storm surge leading to compound flooding events. Present-day urban pluvial flooding is a significant challenge for NYC and this challenge is expected to become more severe with the greater frequency and intensity of storms and sea-level rise (SLR) in the future. In this study, we advance NYC’s assessment of present and future exposure to urban pluvial flooding through simulating various storm scenarios using a citywide hydrologic and hydraulic model. This is the first citywide analysis using NYC’s drainage models focusing on rainfall-induced flooding. We showed that the city’s stormwater system is highly vulnerable to high-intensity short-duration “cloudburst” events, with the extent and volume of flooding being the largest during these events. We further showed that rainfall events coupled with higher sea-level conditions, either from SLR or storm surge, could significantly increase the volume and extent of flooding in the city. We also assessed flood exposure in terms of the number of buildings and length of roads exposed to flooding as well as the number of the affected population. This study informs NYC’s residents of their current and future flood risk and enables the development of tailored solutions to manage increasing flood risk in the city.

    more » « less
  3. Abstract

    High tide floods (HTFs) are minor, shallow flooding events whose frequency has increased due to relative sea‐level rise (SLR) and secular changes in tides. Here we isolate and examine the role of historical landscape change (geomorphology, land cover) and SLR on tides and HTF frequency in an urbanized lagoonal estuary: Jamaica Bay, New York. The approach involves data archeology, historical (1870s) map digitization, as well as numerical modeling of the bay. Numerical simulations indicate that a century of landscape alterations (e.g., inlet deepening and widening, channel deepening, and wetland reclamation) increased the mean tidal range at the head of the bay by about 20%. The observed historical shift from the attenuation to amplification of semidiurnal tides is primarily associated with reduced tidal damping at the inlet and increased tidal reflection. The 18% decrease in surface area exerts a minor influence. A 1‐year (2020) water level simulation is used to evaluate the effects of both SLR and altered morphology on the annual number of HTFs. Results show that of 15 “minor flood” events in 2020, only one would have occurred without SLR and two without landscape changes since the 1870s. Spectral and transfer function analyses of water level reveal frequency‐dependent fingerprints of landscape change, with a significant decrease in damping for high‐frequency surges and tides (6–18 hr time scale). By contrast, SLR produced only minor effects on frequency‐dependent amplification. Nonetheless, the geomorphic influence on the dynamical response significantly increases the vulnerability of the system to SLR, particularly high‐tide flooding.

    more » « less
  4. Abstract

    The cooccurrence of coastal and riverine flooding leads to compound events with substantial impacts on people and property in low‐lying coastal areas. Climate change could increase the level of compound flood hazard through higher extreme sea levels and river flows. Here, a bivariate flood hazard assessment method is proposed to estimate compound coastal‐riverine frequency under current and future climate conditions. A copula‐based approach is used to estimate the joint return period (JRP) of compound floods by incorporating sea‐level rise (SLR) and changes in peak river flows into the marginal distributions of flood drivers. Specifically, the changes in JRP of compound major coastal‐riverine flooding defined based on simultaneous exceedances above major coastal and riverine thresholds, are explored by midcentury. Subsequently, the increase in the probability of occurrence of at least one compound major coastal‐riverine flooding for a given period of time is quantified. The proposed compound flood hazard assessment is conducted at 26 paired tidal‐riverine stations along the Contiguous United States coast with long‐term data and defined flood thresholds. We show that the northeast Atlantic and the western part of the Gulf coasts are experiencing the highest compound major coastal‐riverine flood probability under current conditions. However, future SLR scenarios show the highest frequency amplification along the southeast Atlantic coast. The impact of changes in peak river flows is found to be considerably less than that of SLR. Climate change impacts, especially SLR, may lead to more frequent compound events, which cannot be ignored for future adaptation responses in estuary regions.

    more » « less
  5. Many coastal cities are facing frequent flooding from storm events that are made worse by sea level rise and climate change. The groundwater table level in these low relief coastal cities is an important, but often overlooked, factor in the recurrent flooding these locations face. Infiltration of stormwater and water intrusion due to tidal forcing can cause already shallow groundwater tables to quickly rise toward the land surface. This decreases available storage which increases runoff, stormwater system loads, and flooding. Groundwater table forecasts, which could help inform the modeling and management of coastal flooding, are generally unavailable. This study explores two machine learning models, Long Short-term Memory (LSTM) networks and Recurrent Neural Networks (RNN), to model and forecast groundwater table response to storm events in the flood prone coastal city of Norfolk, Virginia. To determine the effect of training data type on model accuracy, two types of datasets (i) the continuous time series and (ii) a dataset of only storm events, created from observed groundwater table, rainfall, and sea level data from 2010–2018 are used to train and test the models. Additionally, a real-time groundwater table forecasting scenario was carried out to compare the models’ abilities to predict groundwater table levels given forecast rainfall and sea level as input data. When modeling the groundwater table with observed data, LSTM networks were found to have more predictive skill than RNNs (root mean squared error (RMSE) of 0.09 m versus 0.14 m, respectively). The real-time forecast scenario showed that models trained only on storm event data outperformed models trained on the continuous time series data (RMSE of 0.07 m versus 0.66 m, respectively) and that LSTM outperformed RNN models. Because models trained with the continuous time series data had much higher RMSE values, they were not suitable for predicting the groundwater table in the real-time scenario when using forecast input data. These results demonstrate the first use of LSTM networks to create hourly forecasts of groundwater table in a coastal city and show they are well suited for creating operational forecasts in real-time. As groundwater table levels increase due to sea level rise, forecasts of groundwater table will become an increasingly valuable part of coastal flood modeling and management. 
    more » « less