skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "White, Laura F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Contact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, often using rapid antigen tests due to lack of accessibility to PCR tests. These limitations, combined with SARS-CoV-2’s propensity for asymptomatic transmission, raise the question “how reliable was contact tracing for COVID-19 in the United States”? We answered this question using a Markov model to examine the efficiency with which transmission could be detected based on the design and response rates of contact tracing studies in the United States. Our results suggest that contact tracing protocols in the U.S. are unlikely to have identified more than 1.65% (95% uncertainty interval: 1.62-1.68%) of transmission events with PCR testing and 1.00% (95% uncertainty interval 0.98-1.02%) with rapid antigen testing. When considering a more robust contact tracing scenario, based on compliance rates in East Asia with PCR testing, this increases to 62.7% (95% uncertainty interval: 62.6-62.8%). We did not assume presence of asymptomatic transmission or superspreading, making our estimates upper bounds on the actual percentages traced. These findings highlight the limitations in interpretability for studies of SARS-CoV-2 disease spread based on U.S. contact tracing and underscore the vulnerability of the population to future disease outbreaks, for SARS-CoV-2 and other pathogens. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Kolawole, Olatunji Matthew (Ed.)
    As the COVID-19 pandemic progresses, widespread community transmission of SARS-CoV-2 has ushered in a volatile era of viral immune evasion rather than the much-heralded stability of “endemicity” or “herd immunity.” At this point, an array of viral strains has rendered essentially all monoclonal antibody therapeutics obsolete and strongly undermined the impact of vaccinal immunity on SARS-CoV-2 transmission. In this work, we demonstrate that antibody escape resulting in evasion of pre-existing immunity is highly evolutionarily favored and likely to cause waves of short-term transmission. In the long-term, invading strains that induce weak cross-immunity against pre-existing strains may co-circulate with those pre-existing strains. This would result in the formation of serotypes that increase disease burden, complicate SARS-CoV-2 control, and raise the potential for increases in viral virulence. Less durable immunity does not drive positive selection as a trait, but such strains may transmit at high levels if they establish. Overall, our results draw attention to the importance of inter-strain cross-immunity as a driver of transmission trends and the importance of early immune evasion data to predict the trajectory of the pandemic. 
    more » « less
  3. The rapid emergence of immune-evading viral variants of SARS-CoV-2 calls into question the practicality of a vaccine-only public-health strategy for managing the ongoing COVID-19 pandemic. It has been suggested that widespread vaccination is necessary to prevent the emergence of future immune-evading mutants. Here, we examined that proposition using stochastic computational models of viral transmission and mutation. Specifically, we looked at the likelihood of emergence of immune escape variants requiring multiple mutations and the impact of vaccination on this process. Our results suggest that the transmission rate of intermediate SARS-CoV-2 mutants will impact the rate at which novel immune-evading variants appear. While vaccination can lower the rate at which new variants appear, other interventions that reduce transmission can also have the same effect. Crucially, relying solely on widespread and repeated vaccination (vaccinating the entire population multiple times a year) is not sufficient to prevent the emergence of novel immune-evading strains, if transmission rates remain high within the population. Thus, vaccines alone are incapable of slowing the pace of evolution of immune evasion, and vaccinal protection against severe and fatal outcomes for COVID-19 patients is therefore not assured. 
    more » « less
  4. A valuable metric in understanding local infectious disease dynamics is the local time-varying reproduction number, i.e. the expected number of secondary local cases caused by each infected individual. Accurate estimation of this quantity requires distinguishing cases arising from local transmission from those imported from elsewhere. Realistically, we can expect identification of cases as local or imported to be imperfect. We study the propagation of such errors in estimation of the local time-varying reproduction number. In addition, we propose a Bayesian framework for estimation of the true local time-varying reproduction number when identification errors exist. And we illustrate the practical performance of our estimator through simulation studies and with outbreaks of COVID-19 in Hong Kong and Victoria, Australia. This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics and examples of overcoming these’. 
    more » « less
  5. Wu, Joseph T. (Ed.)
    The reproductive number is an important metric that has been widely used to quantify the infectiousness of communicable diseases. The time-varying instantaneous reproductive number is useful for monitoring the real-time dynamics of a disease to inform policy making for disease control. Local estimation of this metric, for instance at a county or city level, allows for more targeted interventions to curb transmission. However, simultaneous estimation of local reproductive numbers must account for potential sources of heterogeneity in these time-varying quantities—a key element of which is human mobility. We develop a statistical method that incorporates human mobility between multiple regions for estimating region-specific instantaneous reproductive numbers. The model also can account for exogenous cases imported from outside of the regions of interest. We propose two approaches to estimate the reproductive numbers, with mobility data used to adjust incidence in the first approach and to inform a formal priori distribution in the second (Bayesian) approach. Through a simulation study, we show that region-specific reproductive numbers can be well estimated if human mobility is reasonably well approximated by available data. We use this approach to estimate the instantaneous reproductive numbers of COVID-19 for 14 counties in Massachusetts using CDC case report data and the human mobility data collected by SafeGraph. We found that, accounting for mobility, our method produces estimates of reproductive numbers that are distinct across counties. In contrast, independent estimation of county-level reproductive numbers tends to produce similar values, as trends in county case-counts for the state are fairly concordant. These approaches can also be used to estimate any heterogeneity in transmission, for instance, age-dependent instantaneous reproductive number estimates. As people are more mobile and interact frequently in ways that permit transmission, it is important to account for this in the estimation of the reproductive number. 
    more » « less
  6. The strategy of relying solely on current SARS-CoV-2 vaccines to halt SARS-CoV-2 transmission has proven infeasible. In response, many public-health authorities have advocated for using vaccines to limit mortality while permitting unchecked SARS-CoV-2 spread (“learning to live with the disease”). The feasibility of this strategy critically depends on the infection fatality rate (IFR) of SARS-CoV-2. An expectation exists that the IFR will decrease due to selection against virulence. In this work, we perform a viral fitness estimation to examine the basis for this expectation. Our findings suggest large increases in virulence for SARS-CoV-2 would result in minimal loss of transmissibility, implying that the IFR may vary freely under neutral evolutionary drift. We use an SEIRS model framework to examine the effect of hypothetical changes in the IFR on steady-state death tolls under COVID-19 endemicity. Our modeling suggests that endemic SARS-CoV-2 implies vast transmission resulting in yearly US COVID-19 death tolls numbering in the hundreds of thousands under many plausible scenarios, with even modest increases in the IFR leading to unsustainable mortality burdens. Our findings highlight the importance of enacting a concerted strategy and continued development of biomedical interventions to suppress SARS-CoV-2 transmission and slow its evolution. 
    more » « less
  7. In the face of a long-running pandemic, understanding the drivers of ongoing SARS-CoV-2 transmission is crucial for the rational management of COVID-19 disease burden. Keeping schools open has emerged as a vital societal imperative during the pandemic, but in-school transmission of SARS-CoV-2 can contribute to further prolonging the pandemic. In this context, the role of schools in driving SARS-CoV-2 transmission acquires critical importance. Here we model in-school transmission from first principles to investigate the effectiveness of layered mitigation strategies on limiting in-school spread. We examined the effect of masks and air quality (ventilation, filtration and ionizers) on steady-state viral load in classrooms, as well as on the number of particles inhaled by an uninfected person. The effectiveness of these measures in limiting viral transmission was assessed for variants with different levels of mean viral load (ancestral, Delta, Omicron). Our results suggest that a layered mitigation strategy can be used effectively to limit in-school transmission, with certain limitations. First, poorly designed strategies (insufficient ventilation, no masks, staying open under high levels of community transmission) will permit in-school spread even if some level of mitigation is present. Second, for viral variants that are sufficiently contagious, it may be difficult to construct any set of interventions capable of blocking transmission once an infected individual is present, underscoring the importance of other measures. Our findings provide practical recommendations; in particular, the use of a layered mitigation strategy that is designed to limit transmission, with other measures such as frequent surveillance testing and smaller class sizes (such as by offering remote schooling options to those who prefer it) as needed. 
    more » « less
  8. Abstract Using data from New York City from January 2020 to April 2020, we found an estimated 28-day lag between the onset of reduced subway use and the end of the exponential growth period of severe acute respiratory syndrome coronavirus 2 within New York City boroughs. We also conducted a cross-sectional analysis of the associations between human mobility (i.e., subway ridership) on the week of April 11, 2020, sociodemographic factors, and coronavirus disease 2019 (COVID-19) incidence as of April 26, 2020. Areas with lower median income, a greater percentage of individuals who identify as non-White and/or Hispanic/Latino, a greater percentage of essential workers, and a greater percentage of health-care essential workers had more mobility during the pandemic. When adjusted for the percentage of essential workers, these associations did not remain, suggesting essential work drives human movement in these areas. Increased mobility and all sociodemographic variables (except percentage of people older than 75 years old and percentage of health-care essential workers) were associated with a higher rate of COVID-19 cases per 100,000 people, when adjusted for testing effort. Our study demonstrates that the most socially disadvantaged not only are at an increased risk for COVID-19 infection, they lack the privilege to fully engage in social distancing interventions. 
    more » « less
  9. null (Ed.)