skip to main content

Search for: All records

Creators/Authors contains: "Whitehead, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis

    Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.

  2. Radical environmental change that provokes population decline can impose constraints on the sources of genetic variation that may enable evolutionary rescue. Adaptive toxicant resistance has rapidly evolved in Gulf killifish ( Fundulus grandis ) that occupy polluted habitats. We show that resistance scales with pollution level and negatively correlates with inducibility of aryl hydrocarbon receptor (AHR) signaling. Loci with the strongest signatures of recent selection harbor genes regulating AHR signaling. Two of these loci introgressed recently (18 to 34 generations ago) from Atlantic killifish ( F. heteroclitus ). One introgressed locus contains a deletion in AHR that confers a large adaptive advantage [selection coefficient ( s ) = 0.8]. Given the limited migration of killifish, recent adaptive introgression was likely mediated by human-assisted transport. We suggest that interspecies connectivity may be an important source of adaptive variation during extreme environmental change.
  3. Abstract

    The mitonuclear species concept hypothesizes that incompatibilities between interacting gene products of the nuclear and mitochondrial genomes are a major factor establishing and maintaining species boundaries. However, most of the data available to test this concept come from studies of genetic variation in mitochondrial DNA, and clines in the mitochondrial genome across contact zones can be produced by a variety of forces. Here, we show that using a combination of population genomic analyses of the nuclear and mitochondrial genomes and studies of mitochondrial function can provide insight into the relative roles of neutral processes, adaptive evolution, and mitonuclear incompatibility in establishing and maintaining mitochondrial clines, using Atlantic killifish (Fundulus heteroclitus) as a case study. There is strong evidence for a role of secondary contact following the last glaciation in shaping a steep mitochondrial cline across a contact zone between northern and southern subspecies of killifish, but there is also evidence for a role of adaptive evolution in driving differentiation between the subspecies in a variety of traits from the level of the whole organism to the level of mitochondrial function. In addition, studies are beginning to address the potential for mitonuclear incompatibilities in admixed populations. However, population genomic studiesmore »have failed to detect evidence for a strong and pervasive influence of mitonuclear incompatibilities, and we suggest that polygenic selection may be responsible for the complex patterns observed. This case study demonstrates that multiple forces can act together in shaping mitochondrial clines, and illustrates the challenge of disentangling their relative roles.

    « less