skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whitworth, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. The origin of the stellar initial mass function (IMF) and its relation with the core mass function (CMF) are actively debated issues with important implications in astrophysics. Recent observations in the W43 molecular complex of top-heavy CMFs, with an excess of high-mass cores compared to the canonical mass distribution, raise questions about our understanding of the star formation processes and their evolution in space and time. Aims. We aim to compare populations of protostellar and prestellar cores in three regions imaged in the ALMA-IMF Large Program. Methods. We created an homogeneous core catalogue in W43, combining a new core extraction in W43-MM1 with the catalogue of W43-MM2&MM3 presented in a previous work. Our detailed search for protostellar outflows enabled us to identify between 23 and 30 protostellar cores out of 127 cores in W43-MM1 and between 42 and 51 protostellar cores out of 205 cores in W43-MM2&MM3. Cores with neither outflows nor hot core emission are classified as prestellar candidates. Results. We found a similar fraction of cores which are protostellar in the two regions, about 35%. This fraction strongly varies in mass, from f pro ≃ 15–20% at low mass, between 0.8 and 3 M ⊙ up to f pro ≃ 80% above 16 M ⊙ . Protostellar cores are found to be, on average, more massive and smaller in size than prestellar cores. Our analysis also revealed that the high-mass slope of the prestellar CMF in W43, α = -1.46 -0.19 +0.12 , is consistent with the Salpeter slope, and thus the top-heavy form measured for the global CMF, α = −0.96 ± 0.09, is due to the protostellar core population. Conclusions. Our results could be explained by ‘clump-fed’ models in which cores grow in mass, especially during the protostellar phase, through inflow from their environment. The difference between the slopes of the prestellar and protostellar CMFs moreover implies that high-mass cores grow more in mass than low-mass cores. 
    more » « less
  2. Aims.The processes that determine the stellar initial mass function (IMF) and its origin are critical unsolved problems, with profound implications for many areas of astrophysics. The W43-MM2&MM3 mini-starburst ridge hosts a rich young protocluster, from which it is possible to test the current paradigm on the IMF origin. Methods.The ALMA-IMF Large Program observed the W43-MM2&MM3 ridge, whose 1.3 mm and 3 mm ALMA 12 m array continuum images reach a ~2500 au spatial resolution. We used both the best-sensitivity and the line-free ALMA-IMF images, reduced the noise with the multi-resolution segmentation techniqueMnGSeg, and derived the most complete and most robust core catalog possible. Using two different extraction software packages,getsfandGExt2D, we identified ~200 compact sources, whose ~100 common sources have, on average, fluxes consistent to within 30%. We filtered sources with non-negligible free-free contamination and corrected fluxes from line contamination, resulting in a W43-MM2&MM3 catalog of 205getsfcores. With a median deconvolved FWHM size of 3400 au, core masses range from ~0.1Mto ~70Mand thegetsfcatalog is 90% complete down to 0.8M.Results.The high-mass end of the core mass function (CMF) of W43-MM2&MM3 is top-heavy compared to the canonical IMF. Fitting the cumulative CMF with a single power-law of the formN(> logM) ∝Mα, we measuredα= −0.95 ± 0.04, compared to the canonicalα= −1.35 Salpeter IMF slope. The slope of the CMF is robust with respect to map processing, extraction software packages, and reasonable variations in the assumptions taken to estimate core masses. We explore several assumptions on how cores transfer their mass to stars (assuming a mass conversion efficiency) and subfragment (defining a core fragment mass function) to predict the IMF resulting from the W43-MM2&MM3 CMF. While core mass growth should flatten the high-mass end of the resulting IMF, core fragmentation could steepen it. Conclusions.In stark contrast to the commonly accepted paradigm, our result argues against the universality of the CMF shape. More robust functions of the star formation efficiency and core subfragmentation are required to better predict the resulting IMF, here suggested to remain top-heavy at the end of the star formation phase. If confirmed, the IMFs emerging from starburst events could inherit their top-heavy shape from their parental CMFs, challenging the IMF universality. 
    more » « less
  3. We present the first data release of the ALMA-IMF Large Program, which covers the 12m-array continuum calibration and imaging. The ALMA-IMF Large Program is a survey of fifteen dense molecular cloud regions spanning a range of evolutionary stages that aims to measure the core mass function. We describe the data acquisition and calibration done by the Atacama Large Millimeter/submillimeter Array (ALMA) observatory and the subsequent calibration and imaging we performed. The image products are combinations of multiple 12 m array configurations created from a selection of the observed bandwidth using multi-term, multi-frequency synthesis imaging and deconvolution. The data products are self-calibrated and exhibit substantial noise improvements over the images produced from the delivered data. We compare different choices of continuum selection, calibration parameters, and image weighting parameters, demonstrating the utility and necessity of our additional processing work. Two variants of continuum selection are used and will be distributed: the “best-sensitivity” ( bsens ) data, which include the full bandwidth, including bright emission lines that contaminate the continuum, and “cleanest” ( cleanest ), which select portions of the spectrum that are unaffected by line emission. We present a preliminary analysis of the spectral indices of the continuum data, showing that the ALMA products are able to clearly distinguish free-free emission from dust emission, and that in some cases we are able to identify optically thick emission sources. The data products are made public with this release. 
    more » « less
  4. Aims. Thanks to the high angular resolution, sensitivity, image fidelity, and frequency coverage of ALMA, we aim to improve our understanding of star formation. One of the breakthroughs expected from ALMA, which is the basis of our Cycle 5 ALMA-IMF Large Program, is the question of the origin of the initial mass function (IMF) of stars. Here we present the ALMA-IMF protocluster selection, first results, and scientific prospects. Methods. ALMA-IMF imaged a total noncontiguous area of ~53 pc 2 , covering extreme, nearby protoclusters of the Milky Way. We observed 15 massive (2.5 −33 × 10 3 M ⊙ ), nearby (2−5.5 kpc) protoclusters that were selected to span relevant early protocluster evolutionary stages. Our 1.3 and 3 mm observations provide continuum images that are homogeneously sensitive to point-like cores with masses of ~0.2 M ⊙ and ~0.6 M ⊙ , respectively, with a matched spatial resolution of ~2000 au across the sample at both wavelengths. Moreover, with the broad spectral coverage provided by ALMA, we detect lines that probe the ionized and molecular gas, as well as complex molecules. Taken together, these data probe the protocluster structure, kinematics, chemistry, and feedback over scales from clouds to filaments to cores. Results. We classify ALMA-IMF protoclusters as Young (six protoclusters), Intermediate (five protoclusters), or Evolved (four proto-clusters) based on the amount of dense gas in the cloud that has potentially been impacted by H  II region(s). The ALMA-IMF catalog contains ~700 cores that span a mass range of ~0.15 M ⊙ to ~250 M ⊙ at a typical size of ~2100 au. We show that this core sample has no significant distance bias and can be used to build core mass functions (CMFs) at similar physical scales. Significant gas motions, which we highlight here in the G353.41 region, are traced down to core scales and can be used to look for inflowing gas streamers and to quantify the impact of the possible associated core mass growth on the shape of the CMF with time. Our first analysis does not reveal any significant evolution of the matter concentration from clouds to cores (i.e., from 1 pc to 0.01 pc scales) or from the youngest to more evolved protoclusters, indicating that cloud dynamical evolution and stellar feedback have for the moment only had a slight effect on the structure of high-density gas in our sample. Furthermore, the first-look analysis of the line richness toward bright cores indicates that the survey encompasses several tens of hot cores, of which we highlight the most massive in the G351.77 cloud. Their homogeneous characterization can be used to constrain the emerging molecular complexity in protostars of high to intermediate masses. Conclusions. The ALMA-IMF Large Program is uniquely designed to transform our understanding of the IMF origin, taking the effects of cloud characteristics and evolution into account. It will provide the community with an unprecedented database with a high legacy value for protocluster clouds, filaments, cores, hot cores, outflows, inflows, and stellar clusters studies. 
    more » « less
  5. Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μ m toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity ( PI ), the polarization fraction ( PF ), and the plane-of-the-sky B-field angle ( χ B_POS ) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived the power spectra of the intensity and χ B POS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span ~3 orders of magnitude in Stokes I and PI and ~2 orders of magnitude in PF (from ~0.2 to ~ 20%). A large scatter in PI and PF is observed for a given value of I . Our analyses show a complex B-field structure when observed over the whole region (~ 10 pc); however, at smaller scales (~1 pc), χ B POS varies coherently along the crests of the filament network. The observed power spectrum of χ B POS can be well represented with a power law function with a slope of − 1.33 ± 0.23, which is ~20% shallower than that of I . We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χ B POS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density ( N H 2 ≳ 10 23  cm −2 ) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to ~ 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields. 
    more » « less