skip to main content

Search for: All records

Creators/Authors contains: "Wieder, William R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract From hillslope to small catchment scales (< 50 km 2 ), soil carbon management and mitigation policies rely on estimates and projections of soil organic carbon (SOC) stocks. Here we apply a process-based modeling approach that parameterizes the MIcrobial-MIneral Carbon Stabilization (MIMICS) model with SOC measurements and remotely sensed environmental data from the Reynolds Creek Experimental Watershed in SW Idaho, USA. Calibrating model parameters reduced error between simulated and observed SOC stocks by 25%, relative to the initial parameter estimates and better captured local gradients in climate and productivity. The calibrated parameter ensemble was used to produce spatially continuous, high-resolution (10 m 2 ) estimates of stocks and associated uncertainties of litter, microbial biomass, particulate, and protected SOC pools across the complex landscape. Subsequent projections of SOC response to idealized environmental disturbances illustrate the spatial complexity of potential SOC vulnerabilities across the watershed. Parametric uncertainty generated physicochemically protected soil C stocks that varied by a mean factor of 4.4 × across individual locations in the watershed and a − 14.9 to + 20.4% range in potential SOC stock response to idealized disturbances, illustrating the need for additional measurements of soil carbon fractions and their turnover time to improve confidence in the MIMICS simulations of SOCmore »dynamics.« less
    Free, publicly-accessible full text available December 1, 2023
  2. Climate change projections consistently demonstrate that warming temperatures and dwindling seasonal snowpack will elicit cascading effects on ecosystem function and water resource availability. Despite this consensus, little is known about potential changes in the variability of ecohydrological conditions, which is also required to inform climate change adaptation and mitigation strategies. Considering potential changes in ecohydrological variability is critical to evaluating the emergence of trends, assessing the likelihood of extreme events such as floods and droughts, and identifying when tipping points may be reached that fundamentally alter ecohydrological function. Using a single-model Large Ensemble with sophisticated terrestrial ecosystem representation, we characterize projected changes in the mean state and variability of ecohydrological processes in historically snow-dominated regions of the Northern Hemisphere. Widespread snowpack reductions, earlier snowmelt timing, longer growing seasons, drier soils, and increased fire risk are projected for this century under a high-emissions scenario. In addition to these changes in the mean state, increased variability in winter snowmelt will increase growing-season water deficits and increase the stochasticity of runoff. Thus, with warming, declining snowpack loses its dependable buffering capacity so that runoff quantity and timing more closely reflect the episodic characteristics of precipitation. This results in a declining predictability of annualmore »runoff from maximum snow water equivalent, which has critical implications for ecosystem stress and water resource management. Our results suggest that there is a strong likelihood of pervasive alterations to ecohydrological function that may be expected with climate change.« less
    Free, publicly-accessible full text available July 26, 2023
  3. Free, publicly-accessible full text available November 3, 2023
  4. Microbial biomass is known to decrease with soil drying and to increase after rewetting due to physiological assimilation and substrate limitation under fluctuating moisture conditions, but how the effects of moisture changes vary between dry and wet environments is unclear. Here, we conducted a meta‐analysis to assess the effects of elevated and reduced soil moisture on microbial biomass carbon (MBC) and nitrogen (MBN) across a broad range of forest sites between dry and wet regions. We found that the influence of both elevated and reduced soil moisture on MBC and MBN concentrations in forest soils was greater in dry than in wet regions. The influence of altered soil moisture on MBC and MBN concentrations increased significantly with the manipulation intensity but decreased with the length of experimental period, with a dramatic increase observed under a very short‐term precipitation pulse. Moisture effect did not differ between coarse‐ and fine‐textured soils. Precipitation intensity, experimental duration, and site standardized precipitation index (dry or wet climate) were more important than edaphic factors (i.e., initial water content, bulk density, clay content) in determining microbial biomass in response to altered moisture in forest soils. Different responses of microbial biomass in forest soils between dry and wetmore »regions should be incorporated into models to evaluate how changes in the amount, timing and intensity of precipitation affect soil biogeochemical processes.« less
  5. null (Ed.)
  6. Soil organic matter (SOM) stocks, decom- position and persistence are largely the product of controls that act locally. Yet the controls are shaped and interact at multiple spatiotemporal scales, from which macrosystem patterns in SOM emerge. Theory on SOM turnover recognizes the resulting spatial and temporal conditionality in the effect sizes of controls that play out across macrosystems, and couples them through evolutionary and community assembly pro- cesses. For example, climate history shapes plant functional traits, which in turn interact with contem- porary climate to influence SOM dynamics. Selection and assembly also shape the functional traits of soil decomposer communities, but it is less clear how in turn these traits influence temporal macrosystem patterns in SOM turnover. Here, we review evidence that establishes the expectation that selection and assembly should generate decomposer communities across macrosystems that have distinct functional effects on SOM dynamics. Representation of this knowledge in soil biogeochemical models affects the magnitude and direction of projected SOM responses under global change. Yet there is high uncertainty and low confidence in these projections. To address these issues, we make the case that a coordinated set of empirical practices are required which necessitate (1) greater use of statistical approaches inmore »biogeochem- istry that are suited to causative inference; (2) long- term, macrosystem-scale, observational and experi- mental networks to reveal conditionality in effect sizes, and embedded correlation, in controls on SOM turnover; and (3) use of multiple measurement grains to capture local- and macroscale variation in controls and outcomes, to avoid obscuring causative understanding through data aggregation. When employed together, along with process-based models to synthesize knowledge and guide further empirical work, we believe these practices will rapidly advance understanding of microbial controls on SOM and improve carbon cycle projections that guide policies on climate adaptation and mitigation.« less
  7. Abstract

    The storage and cycling of soil organic carbon (SOC) are governed by multiple co-varying factors, including climate, plant productivity, edaphic properties, and disturbance history. Yet, it remains unclear which of these factors are the dominant predictors of observed SOC stocks, globally and within biomes, and how the role of these predictors varies between observations and process-based models. Here we use global observations and an ensemble of soil biogeochemical models to quantify the emergent importance of key state factors – namely, mean annual temperature, net primary productivity, and soil mineralogy – in explaining biome- to global-scale variation in SOC stocks. We use a machine-learning approach to disentangle the role of covariates and elucidate individual relationships with SOC, without imposing expected relationshipsa priori. While we observe qualitatively similar relationships between SOC and covariates in observations and models, the magnitude and degree of non-linearity vary substantially among the models and observations. Models appear to overemphasize the importance of temperature and primary productivity (especially in forests and herbaceous biomes, respectively), while observations suggest a greater relative importance of soil minerals. This mismatch is also evident globally. However, we observe agreement between observations and model outputs in select individual biomes – namely, temperate deciduousmore »forests and grasslands, which both show stronger relationships of SOC stocks with temperature and productivity, respectively. This approach highlights biomes with the largest uncertainty and mismatch with observations for targeted model improvements. Understanding the role of dominant SOC controls, and the discrepancies between models and observations, globally and across biomes, is essential for improving and validating process representations in soil and ecosystem models for projections under novel future conditions.

    « less