skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Matrix Approach to Accelerate Spin‐Up of CLM5
Key Points A new semi‐analytical spin‐up (SASU) framework combines the default accelerated spin‐up method and matrix analytical algorithm SASU accelerates CLIM5 spin‐up by tens of times, becoming the fastest method to our knowledge SASU is applicable to most biogeochemical models and enables computationally costly study, for example, sensitivity analysis  more » « less
Award ID(s):
2017884 2242034 1655499
PAR ID:
10446677
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
15
Issue:
8
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose and demonstrate a general method to calibrate the frequency-dependent response of selfcompensating noble-gas–alkali-metal comagnetometers to arbitrary spin perturbations. This includes magnetic and nonmagnetic perturbations such as rotations and exotic spin interactions. The method is based on a fit of the magnetic field response to an analytical model. The frequency-dependent response of the comagnetometer to arbitrary spin perturbations can be inferred using the fit parameters. We demonstrate the effectiveness of this method by comparing the inferred rotation response to an experimental measurement of the rotation response. Our results show that experiments relying on zero-frequency calibration of the comagnetometer response can over- or underestimate the comagnetometer sensitivity by orders of magnitude over a wide frequency range. Moreover, this discrepancy accumulates over time as operational parameters tend to drift during comagnetometer operation. The demonstrated calibration protocol enables accurate prediction and control of comagnetometer sensitivity to, for example, ultralight bosonic dark-matter fields coupling to electron or nuclear spins, as well as accurate monitoring and control of the relevant system parameters. 
    more » « less
  2. Abstract Numerical techniques to efficiently model out-of-equilibrium dynamics in interacting quantum many-body systems are key for advancing our capability to harness and understand complex quantum matter. Here we propose a new numerical approach which we refer to as generalized discrete truncated Wigner approximation (GDTWA). It is based on a discrete semi-classical phase space sampling and allows to investigate quantum dynamics in lattice spin systems with arbitraryS ≥ 1/2. We show that the GDTWA can accurately simulate dynamics of large ensembles in arbitrary dimensions. We apply it forS > 1/2 spin-models with dipolar long-range interactions, a scenario arising in recent experiments with magnetic atoms. We show that the method can capture beyond mean-field effects, not only at short times, but it also can correctly reproduce long time quantum-thermalization dynamics. We benchmark the method with exact diagonalization in small systems, with perturbation theory for short times, and with analytical predictions made for models which feature quantum-thermalization at long times. We apply our method to study dynamics in largeS > 1/2 spin-models and compute experimentally accessible observables such as Zeeman level populations, contrast of spin coherence, spin squeezing, and entanglement quantified by single-spin Renyi entropies. We reveal that largeSsystems can feature larger entanglement than correspondingS = 1/2 systems. Our analyses demonstrate that the GDTWA can be a powerful tool for modeling complex spin dynamics in regimes where other state-of-the art numerical methods fail. 
    more » « less
  3. Color centers in solids, such as the nitrogen-vacancy center in diamond, offer well-protected and well-controlled localized electron spins that can be employed in various quantum technologies. Moreover, the long coherence time of the surrounding spinful nuclei can enable a robust quantum register controlled through the color center.We design pulse sequence protocols that drive the electron spin to generate robust entangling gates with these nuclear memory qubits.We find that compared to using Carr-Purcell-Meiboom-Gill (CPMG) alone, Uhrig decoupling sequence and hybrid protocols composed of CPMG and Uhrig sequences improve these entangling gates in terms of fidelity, spin control range, and spin selectivity. We provide analytical expressions for the sequence protocols and also show numerically the efficacy of our method on nitrogen-vacancy centers in diamond. Our results are broadly applicable to color centers weakly coupled to a small number of nuclear spin qubits. 
    more » « less
  4. Abstract Color centers in solids, such as the nitrogen-vacancy center in diamond, offer well-protected and well-controlled localized electron spins that can be employed in various quantum technologies. Moreover, the long coherence time of the surrounding spinful nuclei can enable a robust quantum register controlled through the color center. We design pulse sequence protocols that drive the electron spin to generate robust entangling gates with these nuclear memory qubits. We find that compared to using Carr-Purcell-Meiboom-Gill (CPMG) alone, Uhrig decoupling sequence and hybrid protocols composed of CPMG and Uhrig sequences improve these entangling gates in terms of fidelity, spin control range, and spin selectivity. We provide analytical expressions for the sequence protocols and also show numerically the efficacy of our method on nitrogen-vacancy centers in diamond. Our results are broadly applicable to color centers weakly coupled to a small number of nuclear spin qubits. 
    more » « less
  5. An analytical implementation of static dipole polarizabilities within the generalized Kohn–Sham semicanonical projected random phase approximation (GKS-spRPA) method for spin-restricted closed-shell and spin-unrestricted open-shell references is presented. General second-order analytical derivatives of the GKS-spRPA energy functional are derived using a Lagrangian approach. By resolution-of-the-identity and complex frequency integration methods, an asymptotic [Formula: see text] scaling of operation count and [Formula: see text] scaling of storage is realized, i.e., the computational requirements are comparable to those for GKS-spRPA ground state energies. GKS-spRPA polarizabilities are assessed for small molecules, conjugated long-chain hydrocarbons, metallocenes, and metal clusters, by comparison against Hartree–Fock (HF), semilocal density functional approximations (DFAs), second-order Møller–Plesset perturbation theory, range-separated hybrids, and experimental data. For conjugated polydiacetylene and polybutatriene oligomers, GKS-spRPA effectively addresses the “overpolarization” problem of semilocal DFAs and the somewhat erratic behavior of post-PBE RPA polarizabilities without empirical adjustments. The ensemble averaged GKS-spRPA polarizabilities of sodium clusters (Na n for n = 2, 3, …, 10) exhibit a mean absolute deviation comparable to PBE with significantly fewer outliers than HF. In conclusion, analytical second-order derivatives of GKS-spRPA energies provide a computationally viable and consistent approach to molecular polarizabilities, including systems prohibitive for other methods due to their size and/or electronic structure. 
    more » « less