Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
B-vitamins are essential micronutrients for marine plankton. Additionally, we now know many marine plankton cannot synthesize B-vitamins de novo (from scratch) and thus are reliant on external supplies. Details of B-vitamin exchange, whether ‘active’ or ‘passive’ (i.e. through cell secretion or mortality), are lacking and as a result we struggle to predict microbial physiology, community composition and biogeochemistry. We argue that significant advances in understanding of the impact of B-vitamin exchange and cycling on marine community structure and biogeochemistry can be made by focusing on unknowns related to the ‘in’s and out’s’ of B-vitamin transport, exchange between plankton, and ecosystem scale processing/transformation of B-vitamins. We point out that it is particularly necessary to reach beyond traditional categorization of populations as B-vitamin auxotrophs (requiring supplied vitamin) or prototrophs ( de novo vitamin synthesizers) and begin addressing which populations are net ‘providers’ and/or ‘consumers’. This is a particularly interesting problem as organisms cannot be confidently categorized as net ‘providers’ and/or ‘consumers’ based on genome-based prediction, and it is possible the two roles may change over time and environmental conditions. We posit that greater knowledge of B-vitamin exchange, e.g. cross-feeding, acquisition and secretion systems, environmental triggers of ‘provision’ and ‘consumption’, will reveal unforeseen networking and novel niches across marine planktonic communities. Last, we advocate for further experiments tracking the responses of isolates or natural communities relative to vitamin availability, tracing flow of B-vitamins between cells using novel approaches (e.g. isotopic, fluorometric), and greater consideration of altered B-vitamin exchange and cycling under future climate scenarios.more » « less
-
The Pacific Ocean constitutes about half of the global oceans and thus microbial processes in this ocean have a large impact on global elemental cycles. Despite several intensely studied regions large areas are still greatly understudied regarding microbial activities, organic matter cycling and biogeography. Refined information about these features is most important to better understand the significance of this ocean for global biogeochemical and elemental cycles. Therefore we investigated a suite of microbial and geochemical variables along a transect from the subantarctic to the subarctic Pacific in the upper 200 m of the water column. The aim was to quantify rates of organic matter processing, identify potential controlling factors and prokaryotic key players. The assessed variables included abundance of heterotrophic prokaryotes and cyanobacteria, heterotrophic prokaryotic production (HPP), turnover rate constants of amino acids, glucose, and acetate, leucine aminopeptidase and β-glucosidase activities, and the composition of the bacterial community by fluorescence in situ hybridization (FISH). The additional quantification of nitrate, dissolved amino acids and carbohydrates, chlorophyll a , particulate organic carbon and nitrogen (POC, PON) provided a rich environmental context. The oligotrophic gyres exhibited the lowest prokaryotic abundances, rates of HPP and substrate turnover. Low nucleic acid prokaryotes dominated in these gyres, whereas in temperate and subpolar regions further north and south, high nucleic acid prokaryotes dominated. Turnover rate constants of glucose and acetate, as well as leucine aminopeptidase activity, increased from (sub)tropical toward the subpolar regions. In contrast, HPP and bulk growth rates were highest near the equatorial upwelling and lowest in the central gyres and subpolar regions. The SAR11 clade, the Roseobacter group and Flavobacteria constituted the majority of the prokaryotic communities. Vertical profiles of the biogeochemical and microbial variables markedly differed among the different regions and showed close covariations of the microbial variables and chlorophyll a , POC and PON. The results show that hydrographic, microbial, and biogeochemical properties exhibited distinct patterns reflecting the biogeographic provinces along the transect. The microbial variables assessed contribute to a better and refined understanding of the scales of microbial organic matter processing in large areas of the epipelagic Pacific beyond its well-studied regions.more » « less
An official website of the United States government
