skip to main content

Search for: All records

Creators/Authors contains: "Wierman, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Learning a dynamical system requires stabilizing the unknown dynamics to avoid state blow-ups. However, the standard reinforcement learning (RL) methods lack formal stabilization guarantees, which limits their applicability for the control of real-world dynamical systems. We propose a novel policy optimization method that adopts Krasovskii's family of Lyapunov functions as a stability constraint. We show that solving this stability-constrained optimization problem using a primal-dual approach recovers a stabilizing policy for the underlying system even under modeling error. Combining this method with model learning, we propose a model-based RL framework with formal stability guarantees, Krasovskii-Constrained Reinforcement Learning (KCRL). We theoretically study KCRL with kernel-based feature representation in model learning and provide a sample complexity guarantee to learn a stabilizing controller for the underlying system. Further, we empirically demonstrate the effectiveness of KCRL in learning stabilizing policies in online voltage control of a distributed power system. We show that KCRL stabilizes the system under various real-world solar and electricity demand profiles, whereas standard RL methods often fail to stabilize. 
    more » « less
    Free, publicly-accessible full text available December 13, 2024
  3. Free, publicly-accessible full text available November 1, 2024
  4. We introduce and study the online pause and resume problem. In this problem, a player attempts to find the k lowest (alternatively, highest) prices in a sequence of fixed length T, which is revealed sequentially. At each time step, the player is presented with a price and decides whether to accept or reject it. The player incurs aswitching cost whenever their decision changes in consecutive time steps, i.e., whenever they pause or resume purchasing. This online problem is motivated by the goal of carbon-aware load shifting, where a workload may be paused during periods of high carbon intensity and resumed during periods of low carbon intensity and incurs a cost when saving or restoring its state. It has strong connections to existing problems studied in the literature on online optimization, though it introduces unique technical challenges that prevent the direct application of existing algorithms. Extending prior work on threshold-based algorithms, we introducedouble-threshold algorithms for both the minimization and maximization variants of this problem. We further show that the competitive ratios achieved by these algorithms are the best achievable by any deterministic online algorithm. Finally, we empirically validate our proposed algorithm through case studies on the application of carbon-aware load shifting using real carbon trace data and existing baseline algorithms.

    more » « less
    Free, publicly-accessible full text available December 7, 2024
  5. We consider a minimization variant on the classical prophet inequality with monomial cost functions. A firm would like to procure some fixed amount of a divisible commodity from sellers that arrive sequentially. Whenever a seller arrives, the seller’s cost function is revealed, and the firm chooses how much of the commodity to buy. We first show that if one restricts the set of distributions for the coefficients to a family of natural distributions that include, for example, the uniform and truncated normal distributions, then there is a thresholding policy that is asymptotically optimal in the number of sellers. We then compare two scenarios based on whether the firm has in-house production capabilities or not. We precisely compute the optimal algorithm’s competitive ratio when in-house production capabilities exist and for a special case when they do not. We show that the main advantage of the ability to produce the commodity in house is that it shields the firm from price spikes in worst-case scenarios.

    Funding: This work was supported by NSF Grants [CNS-2146814, CPS-2136197, CNS-2106403, NGSDI-2105648].

    more » « less
    Free, publicly-accessible full text available June 7, 2024
  6. Free, publicly-accessible full text available June 19, 2024
  7. Free, publicly-accessible full text available June 19, 2024
  8. We examine the problem of smoothed online optimization, where a decision maker must sequentially choose points in a normed vector space to minimize the sum of per-round, non-convex hitting costs and the costs of switching decisions between rounds. The decision maker has access to a black-box oracle, such as a machine learning model, that provides untrusted and potentially inaccurate predictions of the optimal decision in each round. The goal of the decision maker is to exploit the predictions if they are accurate, while guaranteeing performance that is not much worse than the hindsight optimal sequence of decisions, even when predictions are inaccurate. We impose the standard assumption that hitting costs are globally α-polyhedral. We propose a novel algorithm, Adaptive Online Switching (AOS), and prove that, for a large set of feasible δ > 0, it is (1+δ)-competitive if predictions are perfect, while also maintaining a uniformly bounded competitive ratio of 2~O (1/(α δ)) even when predictions are adversarial. Further, we prove that this trade-off is necessary and nearly optimal in the sense that any deterministic algorithm which is (1+δ)-competitive if predictions are perfect must be at least 2~Ω (1/(α δ)) -competitive when predictions are inaccurate. In fact, we observe a unique threshold-type behavior in this trade-off: if δ is not in the set of feasible options, then no algorithm is simultaneously (1 + δ)-competitive if predictions are perfect and ζ-competitive when predictions are inaccurate for any ζ < ∞. Furthermore, we discuss that memory is crucial in AOS by proving that any algorithm that does not use memory cannot benefit from predictions. We complement our theoretical results by a numerical study on a microgrid application. 
    more » « less