skip to main content

Search for: All records

Creators/Authors contains: "Wilkins, Kate"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate variability and periodic droughts have complex effects on carbon (C) fluxes, with uncertain implications for ecosystem C balance under a changing climate. Responses to climate change can be modulated by persistent effects of climate history on plant communities, soil microbial activity, and nutrient cycling (i.e., legacies). To assess how legacies of past precipitation regimes influence tallgrass prairie C cycling under new precipitation regimes, we modified a long‐term irrigation experiment that simulated a wetter climate for >25 years. We reversed irrigated and control (ambient precipitation) treatments in some plots and imposed an experimental drought in plots with a history of irrigation or ambient precipitation to assess how climate legacies affect aboveground net primary productivity (ANPP), soil respiration, and selected soil C pools. Legacy effects of elevated precipitation (irrigation) included higher C fluxes and altered labile soil C pools, and in some cases altered sensitivity to new climate treatments. Indeed, decades of irrigation reduced the sensitivity of both ANPP and soil respiration to drought compared with controls. Positive legacy effects of irrigation on ANPP persisted for at least 3 years following treatment reversal, were apparent in both wet and dry years, and were associated with altered plant functional composition. In contrast, legacy effects on soil respiration were comparatively short‐lived and did not manifest under natural or experimentally‐imposed “wet years,” suggesting that legacy effects on CO2efflux are contingent on current conditions. Although total soil C remained similar across treatments, long‐term irrigation increased labile soil C and the sensitivity of microbial biomass C to drought. Importantly, the magnitude of legacy effects for all response variables varied with topography, suggesting that landscape can modulate the strength and direction of climate legacies. Our results demonstrate the role of climate history as an important determinant of terrestrial C cycling responses to future climate changes.

    more » « less
  2. Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.

    more » « less
    Free, publicly-accessible full text available January 23, 2025
  3. Abstract

    Grasslands are subject to climate change, such as severe drought, and an important aspect of their functioning is temporal stability in response to extreme climate events. Previous research has explored the impacts of extreme drought and post‐drought periods on grassland stability, yet the mechanistic pathways behind these changes have rarely been studied.

    Here, we implemented an experiment with 4 years of drought and 3 years of recovery to assess the effects of drought and post‐drought on the temporal stability of above‐ground net primary productivity (ANPP) and its underlying mechanisms. To do so, we measured community‐weighted mean (CWM) of six plant growth and nine seed traits, functional diversity, population stability and species asynchrony across two cold, semiarid grasslands in northern China. We also performed piecewise structural equation models (SEMs) to assess the relationships between ANPP stability and its underlying mechanisms and how drought and post‐drought periods alter the relative contribution of these mechanisms to ANPP stability.

    We found that temporal stability of ANPP was not reduced during drought due to grasses maintaining productivity, which compensated for increased variation of forb productivity. Moreover, ANPP recovered rapidly after drought, and both grasses and forbs contributed to community stability during the post‐drought period. Overall, ANPP stability decreased during the combined drought and post‐drought periods because of rapid changes in ANPP from drought to post‐drought. SEMs revealed that the temporal stability of ANPP during drought and post‐drought periods was modulated by functional diversity and community‐weighted mean traits directly and indirectly by altering species asynchrony and population stability. Specifically, the temporal stability of ANPP was positively correlated with functional divergence of plant communities. CWMs of seed traits (e.g. seed width and thickness), rather than plant growth traits (e.g. specific leaf area and leaf nutrient content), stabilized grassland ANPP. Productivity of plant communities with large and thick seeds was less sensitive to precipitation changes over time.

    These results emphasize the importance of considering both the functional trait distribution among species and seed traits of dominant species since their combined effects can stabilize ecosystem functions under global climate change scenarios.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  4. Abstract

    Grasslands are expected to experience droughts of unprecedented frequency and magnitude in the future. Characterizing grassland responses and recovery from drought is therefore critical to predict the vulnerability of grassland ecosystems to climate change. Most previous studies have focused on ecosystem responses during drought while investigations of post‐drought recovery are rare. Few studies have used functional traits, and in particular bud or clonal traits, to explore the mechanisms underlying grassland responses to and recovery from drought.

    To address this issue, we experimentally imposed a four‐year drought in a C3‐dominated grassland in northeastern China and monitored recovery for 3 years post‐drought. We investigated the immediate and legacy effects of drought on total above‐ground net primary productivity (ANPP), ANPP of functional groups (rhizomatous grasses, bunch grasses and forbs), and how the legacy effects were driven by plant species diversity, clonal traits and vegetative traits.

    We found that drought progressively reduced total ANPP over the 4‐year period. The reductions in total ANPP in the first and third drought years were caused by the decrease in ANPP of bunch grasses only, while that of the second year was caused by declines in ANPP of bunch grasses and forbs, and the fourth year decline was linked to all three functional groups. The post‐drought recovery of ANPP, which occurred despite the continued loss of plant species diversity, was mainly driven by rapid recovery of rhizomatous and bunch grasses, which compensated for the slow response by forbs. The rapid post‐drought recovery of these grasses can be attributed to their relatively large, intact bud and shoot densities post‐drought, as well as the recovery of plant height and specific leaf area. The rapid recovery of grasses possibly restricted the growth and distribution of forbs, resulting in reduced forb ANPP and, consequently, lower species diversity during the recovery period.

    Synthesis. These results highlight the potential for positive legacy effects of drought on ANPP as well as the important and complementary roles of plant reproductive and vegetative traits in mediating ecosystem recovery from drought in a C3‐dominated grassland.

    more » « less