Abstract Climate change is increasing the frequency and severity of droughts globally, and grasslands are particularly vulnerable to such hydrological extremes. Drought effects at the ecosystem scale have been assessed both experimentally and through the study of naturally occurring drought, with emerging evidence that the magnitude of drought effects may vary depending on the approach used. We took advantage of a decadal study of four grasslands to directly contrast responses of aboveground net primary productivity (ANPP) to simulated vs. natural drought. The grasslands spanned a ~ threefold mean annual precipitation gradient (335–857 mm) and were all subjected to a natural 1-year drought (~ 40% reduction in precipitation from the long-term mean) and a 4 year experimental drought (~ 50% precipitation reduction). We expected that the 4 year drought would reduce ANPP more, and that post-drought recovery would be delayed, compared to the 1-year drought. We found instead that the short-term natural drought reduced ANPP more strongly than the simulated drought in all grasslands (~ 10 to ~ 50%) likely due to the co-occurrence of higher temperatures and vapor pressure deficits with reduced precipitation. Post-drought recovery was site specific and each site differed in their recovery from the natural and experimental droughts. These results align with past analyses that experiments that only manipulate soil moisture likely underestimate the magnitude of natural drought events. However, experiments can provide valuable insight into the relative sensitivity of ecosystems to reduced precipitation and soil moisture, a key aspect of drought. 
                        more » 
                        « less   
                    
                            
                            Extreme drought impacts have been underestimated in grasslands and shrublands globally
                        
                    
    
            Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10504280
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Proceedings of the National Academies of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 4
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 1-10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Recurrent droughts are an inevitable consequence of climate change, yet how grasslands respond to such events is unclear. We conducted a 6‐year rainfall manipulation experiment in a semiarid grassland that consisted of an initial 2‐year drought (2015–2016), followed by a recovery period (2017–2018) and, finally, a second 2‐year drought (2019–2020). In each year, we estimated aboveground net primary productivity (ANPP), species richness, community‐weighted mean (CWM) plant traits, and several indices of functional diversity. The initial drought led to reduced ANPP, which was primarily driven by limited growth of forbs in the first year and grasses in the second year. Total ANPP completely recovered as the rapid recovery of grass productivity compensated for the slow recovery of forb productivity. The subsequent drought led to a greater reduction in total ANPP than the initial drought due to the greater decline of both grass and forb productivity. The structural equation models revealed that soil moisture influenced ANPP responses directly during the initial drought, and indirectly during the subsequent drought by lowering functional diversity, which resulted in reduced total ANPP. Additionally, ANPP was positively influenced by CWM plant height and leaf nitrogen during the recovery period and recurrent drought, respectively. Overall, the greater impact of the second drought on ecosystem function than the initial drought, as well as the underlying differential mechanism, underscores the need for an understanding of how increased drought frequency may alter semiarid grassland functioning.more » « less
- 
            ABSTRACT Ecological stability plays a crucial role in determining the sustainability of ecosystem functioning and nature's contribution to people. Although the disruptive effects of extreme drought on ecosystem structure and functions are widely recognized, their effect on the stability of above‐ and belowground productivity remains understudied. We assessed the effects of drought on ecosystem stability using a 3‐year drought experiment established in six Eurasian steppe grasslands. The treatments imposed included ambient precipitation, chronic drought (66% reduction in precipitation throughout the growing season), and intense drought (complete exclusion of precipitation for two months during the growing season). We found that drought, irrespective of how it was imposed, reduced the stability of aboveground net primary productivity (ANPP) but had little impact on belowground net primary productivity (BNPP) stability. Reduced ANPP stability under drought was primarily attributed to changes in subordinate species stability, with mean annual precipitation (MAP) and its variability, historical drought frequency, and the aridity index (AI) also influencing responses to extreme drought. In contrast, BNPP stability was not related to any community factor investigated, but it was influenced by MAP variability and AI. Our findings that above‐ and belowground productivity stability in grasslands are differentially sensitive to multi‐year extreme drought under both common (MAP and AI) as well as unique drivers (plant community changes) highlight the complexity of predicting carbon cycle dynamics as hydrological extremes become more severe.more » « less
- 
            Abstract The predicted intensification of the North American Monsoon is expected to alter growing season rainfall patterns in the southwestern United States. These patterns, which have historically been characterized by frequent small rain events, are anticipated to shift towards a more extreme precipitation regime consisting of fewer, but larger rain events. Furthermore, human activities are contributing to increased atmospheric nitrogen deposition throughout this dryland region.Alterations in rainfall size and frequency, along with changes in nitrogen availability, are likely to have significant consequences for above‐ground net primary production (ANPP) and plant community dynamics in drylands. The conceptual bucket model predicts that a shift towards fewer, but larger rain events could promote greater rates of ANPP in these regions by maintaining soil moisture availability above drought stress thresholds for longer periods during the growing season. However, only a few short‐term studies have tested this hypothesis, and none have explored the interaction between altered rainfall patterns and nitrogen enrichment.To address this knowledge gap, we conducted a 14‐year rainfall addition and nitrogen fertilization experiment in a northern Chihuahuan Desert grassland to explore the long‐term impacts of changes in monsoon rainfall size and frequency, along with chronic nitrogen enrichment, on ANPP (measured as peak biomass) and plant community dynamics.Contrary to bucket model predictions, small frequent rain events promoted comparable rates of ANPP to large infrequent rain events in the absence of nitrogen enrichment. It was only when nitrogen limitation was alleviated that large infrequent rain events resulted in the greatest ANPP. Furthermore, we found that nitrogen enrichment had the greatest impact on plant community composition under the small frequent rainfall regime.Synthesis. Our long‐term field experiment highlights limitations of the bucket model by demonstrating that water and nitrogen availability sequentially limit dryland ecological processes. Specifically, our findings suggest that while water availability is the primary limiting factor for above‐ground net primary production in these ecosystems, nitrogen limitation becomes increasingly important when water is not limiting. Moreover, our findings reveal that small frequent rain events play an important but underappreciated role in driving dryland ecosystem dynamics.more » « less
- 
            Abstract Compound drought and heatwaves can cause significant damage to the environment, economy, and society. In this study, we quantify the spatio‐temporal changes in compound drought and heatwave (CDHW) events by integrating weekly self‐calibrated Palmer Drought Severity Index (sc_PDSI) and daily maximum temperatures during the period 1983 to 2016. Multiple data products are used to examine the robustness of sc_PDSI in the compound event analysis. The results consistently suggest significant increases in drought‐related heatwaves and affected global land area in recent (warmer) periods. Several regions across the globe witnessed rise in CDHW frequency (one to three events/year), duration (2–10 days/year), and severity. This increasing pattern is spatially asymmetric, and greater amplification is observed across the Northern hemisphere due to recent warming. Furthermore, the background aridity influences the spatiotemporal evolution of CDHW events. The results can be applied to minimize the impacts of extreme CDHWs in critical geographical regions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    