- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
30
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Willi, Marco (3)
-
Fortson, Lucy (2)
-
Packer, Craig (2)
-
Palmer, Meredith S. (2)
-
Bombaci, Sara P. (1)
-
Boyer, Amy (1)
-
Cardoso, Anabelle W. (1)
-
Downs, Colleen (1)
-
Fritz, Herve (1)
-
Gaggiotti, ed., Oscar (1)
-
Guthmann, Abby (1)
-
Hetem, Robyn S. (1)
-
Huebner, Sarah (1)
-
Huebner, Sarah E. (1)
-
Jachowski, David S. (1)
-
Keith, Mark (1)
-
Locke, Christina (1)
-
Mgqatsa, Nokubonga (1)
-
Pardo, Lain E. (1)
-
Parker, Daniel M. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Beygelzimer (0)
-
A. E. Lischka, E.B. Dyer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. Higgins (0)
-
A. I. Sacristán, J. C. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Camera traps - remote cameras that capture images of passing wildlife - have become a ubiquitous tool in ecology and conservation. Systematic camera trap surveys generate ‘Big Data’ across broad spatial and temporal scales, providing valuable information on environmental and anthropogenic factors affecting vulnerable wildlife populations. However, the sheer number of images amassed can quickly outpace researchers’ ability to manually extract data from these images (e.g., species identities, counts, and behaviors) in timeframes useful for making scientifically-guided conservation and management decisions. Here, we present ‘Snapshot Safari’ as a case study for merging citizen science and machine learning to rapidly generate highly accurate ecological Big Data from camera trap surveys. Snapshot Safari is a collaborative cross-continental research and conservation effort with 1500+ cameras deployed at over 40 eastern and southern Africa protected areas, generating millions of images per year. As one of the first and largest-scale camera trapping initiatives, Snapshot Safari spearheaded innovative developments in citizen science and machine learning. We highlight the advances made and discuss the issues that arose using each of these methods to annotate camera trap data. We end by describing how we combined human and machine classification methods (‘Crowd AI’) to create an efficient integrated datamore »
-
Pardo, Lain E. ; Bombaci, Sara P. ; Huebner, Sarah ; Somers, Michael J. ; Fritz, Herve ; Downs, Colleen ; Guthmann, Abby ; Hetem, Robyn S. ; Keith, Mark ; le Roux, Aliza ; et al ( , South African Journal of Science)
-
Willi, Marco ; Pitman, Ross T. ; Cardoso, Anabelle W. ; Locke, Christina ; Swanson, Alexandra ; Boyer, Amy ; Veldthuis, Marten ; Fortson, Lucy ; Gaggiotti, ed., Oscar ( , Methods in Ecology and Evolution)