skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Citizen science, computing, and conservation: How can “Crowd AI” change the way we tackle large-scale ecological challenges?
Camera traps - remote cameras that capture images of passing wildlife - have become a ubiquitous tool in ecology and conservation. Systematic camera trap surveys generate ‘Big Data’ across broad spatial and temporal scales, providing valuable information on environmental and anthropogenic factors affecting vulnerable wildlife populations. However, the sheer number of images amassed can quickly outpace researchers’ ability to manually extract data from these images (e.g., species identities, counts, and behaviors) in timeframes useful for making scientifically-guided conservation and management decisions. Here, we present ‘Snapshot Safari’ as a case study for merging citizen science and machine learning to rapidly generate highly accurate ecological Big Data from camera trap surveys. Snapshot Safari is a collaborative cross-continental research and conservation effort with 1500+ cameras deployed at over 40 eastern and southern Africa protected areas, generating millions of images per year. As one of the first and largest-scale camera trapping initiatives, Snapshot Safari spearheaded innovative developments in citizen science and machine learning. We highlight the advances made and discuss the issues that arose using each of these methods to annotate camera trap data. We end by describing how we combined human and machine classification methods (‘Crowd AI’) to create an efficient integrated data pipeline. Ultimately, by using a feedback loop in which humans validate machine learning predictions and machine learning algorithms are iteratively retrained on new human classifications, we can capitalize on the strengths of both methods of classification while mitigating the weaknesses. Using Crowd AI to quickly and accurately ‘unlock’ ecological Big Data for use in science and conservation is revolutionizing the way we take on critical environmental issues in the Anthropocene era.  more » « less
Award ID(s):
1810586 1835530 1835272
PAR ID:
10298984
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Human Computation
Volume:
8
Issue:
2
ISSN:
2330-8001
Page Range / eLocation ID:
54 to 75
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fortson, Lucy; Crowston, Kevin; Kloetzer, Laure; Ponti, Marisa (Ed.)
    Using public support to extract information from vast datasets has become a popular method for accurately labeling wildlife data in camera trap (CT) images. However, the increasing demand for volunteer effort lengthens the time interval between data collection and our ability to draw ecological inferences or perform data-driven conservation actions. Artificial intelligence (AI) approaches are currently highly effective for species detection (i.e., whether an image contains animals or not) and labeling common species; however, it performs poorly on species rarely captured in images and those that are highly visually similar to one another. To capitalize on the best of human and AI classifying methods, we developed an integrated CT data pipeline in which AI provides an initial pass on labeling images, but is supervised and validated by humans (i.e., a “human-in-the-loop” approach). To assess classification accuracy gains, we compare the precision of species labels produced by AI and HITL protocols to a “gold standard” (GS) dataset annotated by wildlife experts. The accuracy of the AI method was species-dependent and positively correlated with the number of training images. The combined efforts of HITL led to error rates of less than 10% for 73% of the dataset and lowered the error rates for an additional 23%. For two visually similar species, human input resulted in higher error rates than AI. While integrating humans in the loop increases classification times relative to AI alone, the gains in accuracy suggest that this method is highly valuable for high-volume CT surveys. 
    more » « less
  2. As camera traps have grown in popularity, their utilization has expanded to numerous fields, including wildlife research, conservation, and ecological studies. The information gathered using this equipment gives researchers a precise and comprehensive understanding about the activities of animals in their natural environments. For this type of data to be useful, camera trap images must be labeled so that the species in the images can be classified and counted. This has typically been done by teams of researchers and volunteers, and it can be said that the process is at best time-consuming. With recent developments in deep learning, the process of automatically detecting and identifying wildlife using Convolutional Neural Networks (CNN) can significantly reduce the workload of research teams and free up resources so that researchers can focus on the aspects of conservation. 
    more » « less
  3. As camera traps have grown in popularity, their utilization has expanded to numerous fields, including wildlife research, conservation, and ecological studies. The information gathered using this equipment gives researchers a precise and comprehensive understanding about the activities of animals in their natural environments. For this type of data to be useful, camera trap images must be labeled so that the species in the images can be classified and counted. This has typically been done by teams of researchers and volunteers, and it can be said that the process is at best time-consuming. With recent developments in deep learning, the process of automatically detecting and identifying wildlife using Convolutional Neural Networks (CNN) can significantly reduce the workload of research teams and free up resources so that researchers can focus on the aspects of conservation. 
    more » « less
  4. Synopsis In the era of big data, ecological research is experiencing a transformative shift, yet big-data advancements in thermal ecology and the study of animal responses to climate conditions remain limited. This review discusses how big data analytics and artificial intelligence (AI) can significantly enhance our understanding of microclimates and animal behaviors under changing climatic conditions. We explore AI’s potential to refine microclimate models and analyze data from advanced sensors and camera technologies, which capture detailed, high-resolution information. This integration can allow researchers to dissect complex ecological and physiological processes with unprecedented precision. We describe how AI can enhance microclimate modeling through improved bias correction and downscaling techniques, providing more accurate estimates of the conditions that animals face under various climate scenarios. Additionally, we explore AI’s capabilities in tracking animal responses to these conditions, particularly through innovative classification models that utilize sensors such as accelerometers and acoustic loggers. For example, the widespread usage of camera traps can benefit from AI-driven image classification models to accurately identify thermoregulatory responses, such as shade usage and panting. AI is therefore instrumental in monitoring how animals interact with their environments, offering vital insights into their adaptive behaviors. Finally, we discuss how these advanced data-driven approaches can inform and enhance conservation strategies. In particular, detailed mapping of microhabitats essential for species survival under adverse conditions can guide the design of climate-resilient conservation and restoration programs that prioritize habitat features crucial for biodiversity resilience. In conclusion, the convergence of AI, big data, and ecological science heralds a new era of precision conservation, essential for addressing the global environmental challenges of the 21st century. 
    more » « less
  5. Citizen science and artificial intelligence (AI) complement each other by harnessing the strengths of both human and machine capabilities. Citizen science generates terabytes of raw numerical, text, and image data, the analysis of which requires automated techniques to process in an efficient manner. Conversely, AI computer vision technology can require tens of thousands of images during the training process, and citizen science projects are well suited to provide large libraries of data. Herein, we describe how AI tools are being applied across the GLOBE Observer citizen science data ecosystem, where image recognition algorithms are supporting data ingest processes, protecting user privacy and improving data fidelity. GLOBE citizen science data has been used to develop automated data classification routines that enable information discovery of mosquito larvae and land cover labels. These advances position GLOBE citizen scientist data for discovery and use in environmental and health research, as well as by machine learning scientists working in the general field of GeoAI. 
    more » « less