skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Williams, Jennifer L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Predicting the effects of climate change on plant and animal populations is an urgent challenge for understanding the fate of biodiversity under global change. At the surface, quantifying how climate drives the vital rates that underlie population dynamics appears simple, yet many decisions are required to connect climate to demographic data. Competing approaches have emerged in the literature with little consensus around best practices. Here we provide a practical guide for how to best link vital rates to climate for the purposes of inference and projection of population dynamics. We first describe the sources of demographic and climate data underlying population models. We then focus on best practices to model the relationships between vital rates and climate, highlighting what we can learn from mechanistic and phenomenological models. Finally, we discuss the challenges of prediction and forecasting in the face of uncertainty about climate‐demographic relationships as well as future climate. We conclude by suggesting ways forward to build this field of research into one that makes robust forecasts of population persistence, with opportunities for synthesis across species. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract Dispersal is a central life history trait that affects the ecological and evolutionary dynamics of populations and communities. The recent use of experimental evolution for the study of dispersal is a promising avenue for demonstrating valuable proofs of concept, bringing insight into alternative dispersal strategies and trade‐offs, and testing the repeatability of evolutionary outcomes.Practical constraints restrict experimental evolution studies of dispersal to a set of typically small, short‐lived organisms reared in artificial laboratory conditions. Here, we argue that despite these restrictions, inferences from these studies can reinforce links between theoretical predictions and empirical observations and advance our understanding of the eco‐evolutionary consequences of dispersal.We illustrate how applying an integrative framework of theory, experimental evolution and natural systems can improve our understanding of dispersal evolution under more complex and realistic biological scenarios, such as the role of biotic interactions and complex dispersal syndromes. 
    more » « less
  3. As droughts become longer and more intense, impacts on terrestrial primary productivity are expected to increase progressively. Yet, some ecosystems appear to acclimate to multiyear drought, with constant or diminishing reductions in productivity as drought duration increases. We quantified the combined effects of drought duration and intensity on aboveground productivity in 74 grasslands and shrublands distributed globally. Ecosystem acclimation with multiyear drought was observed overall, except when droughts were extreme (i.e., ≤1-in-100-year likelihood of occurrence). Productivity losses after four consecutive years of extreme drought increased by ~2.5-fold compared with those of the first year. These results portend a foundational shift in ecosystem behavior if drought duration and intensity increase, from maintenance of reduced functioning over time to progressive and profound losses of productivity when droughts are extreme. 
    more » « less
    Free, publicly-accessible full text available October 16, 2026
  4. Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought. 
    more » « less
  5. Abstract Despite a global footprint of shifts in flowering phenology in response to climate change, the reproductive consequences of these shifts are poorly understood. Furthermore, it is unknown whether altered flowering times affect plant population viability.We examine whether climate change‐induced earlier flowering has consequences for population persistence by incorporating reproductive losses from frost damage (a risk of early flowering) into population models of a subalpine sunflower (Helianthella quinquenervis). Using long‐term demographic data for three populations that span the species’ elevation range (8–15 years, depending on the population), we first examine how snowmelt date affects plant vital rates. To verify vital rate responses to snowmelt date experimentally, we manipulate snowmelt date with a snow removal experiment at one population. Finally, we construct stochastic population projection models and Life Table Response Experiments for each population.We find that populations decline (λs < 1) as snowmelt dates become earlier. Frost damage to flower buds, a consequence of climate change‐induced earlier flowering, does not contribute strongly to population declines. Instead, we find evidence that negative effects on survival, likely due to increased drought risk during longer growing seasons, drive projected population declines under earlier snowmelt dates.Synthesis.Shifts in flowering phenology are a conspicuous and important aspect of biological responses to climate change, but here we show that the phenology of reproductive events can be unreliable measures of threats to population persistence, even when earlier flowering is associated with substantial reproductive losses. Evidence for shifts in reproductive phenology, along with scarcer evidence that these shifts actually influence reproductive success, are valuable but can paint an incomplete and even misleading picture of plant population responses to climate change. 
    more » « less