Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Delta blue intensity is a commonly used method to correct for the heartwood-sapwood color change in blue intensity (BI) measurements. It is based on the assumption that the heartwood-sapwood color change is similar in both earlywood and latewood. This assumption has not been supported physiologically. Furthermore, delta BI may confound the climate signals in earlywood and latewood BI as it is technically a linear combination of the other two. Here, instead of using delta BI, we used change point detection to identify the heartwood-sapwood transition, and corrected for the color change by rescaling the mean and variance of BI measurements after the transition to those immediately before. We tested three different change point detection methods and found that they agreed well with one another. Importantly, our approach preserves the climate signals in both earlywood and latewood BI data, while delta BI causes a total loss of climate signals in our test case. Therefore, we suggest that change point detection should be used instead of delta BI to account for the heartwood-sapwood color change.more » « lessFree, publicly-accessible full text available April 4, 2026
-
Common Era temperature variability has been a prominent component in Intergovernmental Panel on Climate Change reports over the last several decades and was twice featured in their Summary for Policymakers. A single reconstruction of mean Northern Hemisphere temperature variability was first highlighted in the 2001 Summary for Policymakers, despite other estimates that existed at the time. Subsequent reports assessed many large-scale temperature reconstructions, but the entirety of Common Era temperature history in the most recent Sixth Assessment Report of the Intergovernmental Panel on Climate Change was restricted to a single estimate of mean annual global temperatures. We argue that this focus on a single reconstruction is an insufficient summary of our understanding of temperature variability over the Common Era. We provide a complementary perspective by offering an alternative assessment of the state of our understanding in high-resolution paleoclimatology for the Common Era and call for future reports to present a more accurate and comprehensive assessment of our knowledge about this important period of human and climate history.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The Eldgjá eruption is the largest basalt lava flood of the Common Era. It has been linked to a major ice‐core sulfur (S) spike in 939–940 CE and Northern Hemisphere summer cooling in 940 CE. Despite its magnitude and potential climate impacts, uncertainties remain concerning the eruption timeline, atmospheric dispersal of emitted volatiles, and coincident volcanism in Iceland and elsewhere. Here, we present a comprehensive analysis of Greenland ice‐cores from 936 to 943 CE, revealing a complex volatile record and cryptotephra with numerous geochemical populations. Transitional alkali basalt tephra matching Eldgjá are found in 939–940 CE, while tholeiitic basalt shards present in 936/937 CE and 940/941 CE are compatible with contemporaneous Icelandic eruptions from Grímsvötn and Bárðarbunga‐Veiðivötn systems (including V‐Sv tephra). We also find four silicic tephra populations, one of which we link to the Jala Pumice of Ceboruco (Mexico) at 941 ± 1 CE. Triple S isotopes, Δ33S, spanning 936–940 CE are indicative of upper tropospheric/lower stratospheric transport of aerosol sourced from the Icelandic fissure eruptions. However, anomalous Δ33S (down to −0.4‰) in 940–941 CE evidence stratospheric aerosol transport consistent with summer surface cooling revealed by tree‐ring reconstructions. Tephra associated with the anomalous Δ33S have a variety of compositions, complicating the attribution of climate cooling to Eldgjá alone. Nevertheless, our study confirms a major S emission from Eldgjá in 939–940 CE and implicates Eldgjá and a cluster of eruptions as triggers of summer cooling, severe winters, and privations in ∼940 CE.more » « lessFree, publicly-accessible full text available August 28, 2025
-
The 540s, 1450s, and 1600s represent three of the five coldest decades in the Common Era (CE). In each of these cases, the cause of these cold pulses has been attributed to large volcanic eruptions. However, the provenance of the eruption and magnitude of the volcanic forcing remains uncertain. Here, we use high-resolution sulfur isotopes in Greenland and Antarctic ice cores measured across these events to provide a means of improving sulfur loading estimates for these eruptions. In each case, the largest reconstructed tree-ring cooling is associated with an extratropical eruption, and the high-altitude stratospheric sulfate loading of these events is substantially smaller than previous estimates (by up to a factor of two). These results suggest an increased sensitivity of the reconstructed Northern Hemisphere summer temperature response to extratropical eruptions. This highlights the importance of climate feedbacks and processes that amplify and prolong the cooling signal from high latitudes, such as changes in sea ice extent and ocean heat content.more » « less
-
null (Ed.)Abstract We use theNorthern Hemisphere Tree-RingNetwork Development (NTREND) tree-ring database to examine the effects of using a small, highly-sensitive proxy network for paleotemperature data assimilation over the last millennium. We first evaluate our methods using pseudo-proxy experiments. These indicate that spatial assimilations using this network are skillful in the extratropical Northern Hemisphere and improve on previous NTREND reconstructions based on Point-by-Point regression. We also find our method is sensitive to climate model biases when the number of sites becomes small. Based on these experiments, we then assimilate the real NTREND network. To quantify model prior uncertainty, we produce 10 separate reconstructions, each assimilating a different climate model. These reconstructions are most dissimilar prior to 1100 CE, when the network becomes sparse, but show greater consistency as the network grows. Temporal variability is also underestimated before 1100 CE. Our assimilation method produces spatial uncertainty estimates and these identify treeline North America and eastern Siberia as regions that would most benefit from development of new millennial-length temperature-sensitive tree-ring records. We compare our multi-model mean reconstruction to five existing paleo-temperature products to examine the range of reconstructed responses to radiative forcing. We find substantial differences in the spatial patterns and magnitudes of reconstructed responses to volcanic eruptions and in the transition between the Medieval epoch and Little Ice Age. These extant uncertainties call for the development of a paleoclimate reconstruction intercomparison framework for systematically examining the consequences of proxy network composition and reconstruction methodology and for continued expansion of tree-ring proxy networks.more » « less
-
Abstract. We evaluate a range of blue intensity (BI) tree-ringparameters in eight conifer species (12 sites) from Tasmania and New Zealandfor their dendroclimatic potential, and as surrogate wood anatomicalproxies. Using a dataset of ca. 10–15 trees per site, we measured earlywoodmaximum blue intensity (EWB), latewood minimum blue intensity (LWB), and theassociated delta blue intensity (DB) parameter for dendrochronologicalanalysis. No resin extraction was performed, impacting low-frequency trends.Therefore, we focused only on the high-frequency signal by detrending alltree-ring and climate data using a 20-year cubic smoothing spline. All BIparameters express low relative variance and weak signal strength comparedto ring width. Correlation analysis and principal component regressionexperiments identified a weak and variable climate response for mostring-width chronologies. However, for most sites, the EWB data, despite weaksignal strength, expressed strong coherence with summer temperatures.Significant correlations for LWB were also noted, but the sign of therelationship for most species is opposite to that reported for all coniferspecies in the Northern Hemisphere. DB results were mixed but performedbetter for the Tasmanian sites when combined through principal componentregression methods than for New Zealand. Using the fullmulti-species/parameter network, excellent summer temperature calibrationwas identified for both Tasmania and New Zealand ranging from 52 % to78 % explained variance for split periods (1901–1950/1951–1995), withequally robust independent validation (coefficient of efficiency = 0.41 to0.77). Comparison of the Tasmanian BI reconstruction with a quantitativewood anatomical (QWA) reconstruction shows that these parameters recordessentially the same strong high-frequency summer temperature signal.Despite these excellent results, a substantial challenge exists with thecapture of potential secular-scale climate trends. Although DB, band-pass,and other signal processing methods may help with this issue, substantiallymore experimentation is needed in conjunction with comparative analysis withring density and QWA measurements.more » « less
-
This is the first study to generate and analyze the climate signal in blue intensity (BI) tree-ring chronologies from Alaska yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little). The latewood BI chronology shows a much stronger temperature sensitivity than ring width and can thus provide information on past climate. The well-replicated BI chronology exhibits a positive January–August mean maximum temperature signal for 1900–1975, after which it loses temperature sensitivity following the 1976–1977 shift in northeastern Pacific climate. The positive temperature response appears to recover and remains strong for the most recent decades, but the coming years will continue to test this observation. This temporary loss of temperature sensitivity from about 1976 to 1999 is not evident in ring width or in a change in forest health but is consistent with prior work linking cedar decline to warming. A confounding factor is the uncertain influence of a shift in color variation from the heartwood–sapwood boundary. Future expansion of the yellow-cedar BI network and further investigation of the influence of the heartwood–sapwood transitions in the BI signal will lead to a better understanding of the utility of this species as a climate proxy.more » « less
-
null (Ed.)Abstract Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 ( p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.more » « less