skip to main content


Search for: All records

Creators/Authors contains: "Wilson, Stephanie_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Subterranean estuaries (STEs) form in the subsurface where fresh groundwater and seawater meet and mix. Subterranean estuaries support a variety of biogeochemical processes including those transforming nitrogen (N). Groundwater is often enriched with dissolved inorganic nitrogen (DIN), and transformations in the STE determine the fate of that DIN, which may be discharged to coastal waters. Nitrification oxidizes ammonium (NH4+) to nitrate, making DIN available for N removal via denitrification. We measured nitrification at an STE, in Virginia, USA using in situ and ex situ methods including conservative mixing models informed by in situ geochemical profiles, an in situ experiment with15NH4+tracer injection, and ex situ sediment slurry incubations with15NH4+tracer addition. All methods indicated nitrification in the STE, but the ex situ sediment slurries revealed higher rates than both the in situ tracr experiment and mixing model estimations. Nitrification rates ranged 55.0–183.16 μmol N m−2 d−1based on mixing models, 94.2–225 μmol N m−2 d−1in the in situ tracer experiment, and 36.6–109 μmol N m−2 d−1slurry incubations. The in situ tracer experiment revealed higher rates and spatial variation not captured by the other methods. The geochemical complexity of the STE makes it difficult to replicate in situ conditions with incubations and calculations based on chemical profiles integrate over longer timescales, therefore, in situ approaches may best quantify transformation rates. Our data suggest that STE nitrification produces NO3, altering the DIN pool discharged to overlying water via submarine groundwater discharge.

     
    more » « less
  2. Abstract

    Submarine groundwater discharge (SGD) dynamically links land‐ and ocean‐derived chemical constituents, such as metals, in the coastal ocean. While many metals are sediment‐bound, changing environmental conditions, particularly along the coast, may lead to increased release of metals to their dissolved and more bioavailable form. Here, we review metal behavior, speciation, and drivers of mobilization in the coastal environment under anthropogenic influence. We also model global metal contamination risk to the coastal ocean via SGD considering anthropogenic and hydrogeologic pressures, where tropical regions with high population density, SGD, and acid sulfate soils (4% of the global coast) present the highest risk. Although most SGD studies focus on other analytes, such as nutrients, this review demonstrates the importance of considering SGD as a critical pathway for metals to reach the coastal ocean under rapidly changing environmental conditions.

     
    more » « less
  3. Abstract

    Coastal habitat‐forming species provide protection and essential habitat for fisheries but their ability to maintain these services are under threat from novel stressors including rising temperatures. Coastal habitat restoration is a powerful tool to help mitigate the loss of habitat‐forming species, however, many efforts focus on reintroducing a single, imperilled species instead of incorporating alternatives that are more conducive to current and future conditions. Seagrass restoration has seen mixed success in halting local meadow declines but could begin to specifically utilize generalist seagrasses with climate change‐tolerant and opportunistic life history traits including high reproduction rates and rapid growth.

    Here, we built on decades of successful eelgrass (Zostera marina) restoration in the Chesapeake Bay by experimentally testing seed‐based restoration potential of widgeongrass (Ruppia maritima)—a globally distributed seagrass that can withstand wide ranges of salinities and temperatures. Using field experiments, we evaluated which seeding methods yielded highest widgeongrass survival and growth, tested if seeding widgeongrass adjacent to eelgrass can increase restoration success, and quantified how either seagrass species changes restored bed structure, invertebrate communities, and nitrogen cycling.

    We found that widgeongrass can be restored via direct seeding in the fall, and that seeding both species maximized total viable restored area. Our pilot restoration area increased by 98% because we seeded widgeongrass in shallow, high temperature waters that are currently unsuitable for eelgrass survival and thus, would remain unseeded via only eelgrass restoration efforts. Restored widgeongrass had higher faunal diversity and double animal abundance per plant biomass than restored eelgrass, whereas restored eelgrass produced three times greater plant biomass per unit area and higher nitrogen recycling in the sediment.

    Synthesis and applications.Overall, we provide evidence that supplementing opportunistic, generalist species into habitat restoration is a proactive approach to combat climate change impacts. Specifically, these species can increase trait diversity which, for our study, increased total habitat area restored—a key factor to promote seagrass beds' facilitation cascades, stability, and grass persistence through changing environments. Now, we call for tests to determine if the benefits of restoration with generalist species alone or in conjunction with historically dominant taxa are broadly transferrable to restoration in other marine and terrestrial habitats.

     
    more » « less
  4. Abstract

    Terrestrial groundwater travels through subterranean estuaries before reaching the sea. Groundwater‐derived nutrients drive coastal water quality, primary production, and eutrophication. We determined how dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved organic nitrogen (DON) are transformed within subterranean estuaries and estimated submarine groundwater discharge (SGD) nutrient loads compiling > 10,000 groundwater samples from 216 sites worldwide. Nutrients exhibited complex, nonconservative behavior in subterranean estuaries. Fresh groundwater DIN and DIP are usually produced, and DON is consumed during transport. Median total SGD (saline and fresh) fluxes globally were 5.4, 2.6, and 0.18 Tmol yr−1for DIN, DON, and DIP, respectively. Despite large natural variability, total SGD fluxes likely exceed global riverine nutrient export. Fresh SGD is a small source of new nutrients, but saline SGD is an important source of mostly recycled nutrients. Nutrients exported via SGD via subterranean estuaries are critical to coastal biogeochemistry and a significant nutrient source to the oceans.

     
    more » « less