Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Inspired by biology’s most sophisticated computer, the brain, neural networks constitute a profound reformulation of computational principles1–3. Analogous high-dimensional, highly interconnected computational architectures also arise within information-processing molecular systems inside living cells, such as signal transduction cascades and genetic regulatory networks4–7. Might collective modes analogous to neural computation be found more broadly in other physical and chemical processes, even those that ostensibly play non-information-processing roles? Here we examine nucleation during self-assembly of multicomponent structures, showing that high-dimensional patterns of concentrations can be discriminated and classified in a manner similar to neural network computation. Specifically, we design a set of 917 DNA tiles that can self-assemble in three alternative ways such that competitive nucleation depends sensitively on the extent of colocalization of high-concentration tiles within the three structures. The system was trained in silico to classify a set of 18 grayscale 30 × 30 pixel images into three categories. Experimentally, fluorescence and atomic force microscopy measurements during and after a 150 hour anneal established that all trained images were correctly classified, whereas a test set of image variations probed the robustness of the results. Although slow compared to previous biochemical neural networks, our approach is compact, robust and scalable. Our findings suggest that ubiquitous physical phenomena, such as nucleation, may hold powerful information-processing capabilities when they occur within high-dimensional multicomponent systems.more » « less
-
Seki, Shinnosuke; Stewart, Jaimie Marie (Ed.)Life is chemical intelligence. What is the source of intelligent behavior in molecular systems? Here we illustrate how, in contrast to the common belief that energy use in non-equilibrium reactions is essential, the detailed balance equilibrium properties of multicomponent liquid interactions are sufficient for sophisticated information processing. Our approach derives from the classical Boltzmann machine model for probabilistic neural networks, inheriting key principles such as representing probability distributions via quadratic energy functions, clamping input variables to infer conditional probability distributions, accommodating omnidirectional computation, and learning energy parameters via a wake phase / sleep phase algorithm that performs gradient descent on the relative entropy with respect to the target distribution. While the cubic lattice model of multicomponent liquids is standard, the behaviors exhibited by the trained molecules capture both previously-observed phenomena such as core-shell condensate architectures as well as novel phenomena such as an analog of Hopfield associative memories that perform recall by contact with a patterned surface. Our final example demonstrates equilibrium classification of MNIST digits. Experimental implementation using DNA nanostar liquids is conceptually straightforward.more » « less
-
Models of well-mixed chemical reaction networks (CRNs) have provided a solid foundation for the study of programmable molecular systems, but the importance of spatial organization in such systems has increasingly been recognized. In this paper, we explore an alternative chemical computing model introduced by Qian & Winfree in 2014, the surface CRN, which uses molecules attached to a surface such that each molecule only interacts with its immediate neighbours. Expanding on the constructions in that work, we first demonstrate that surface CRNs can emulate asynchronous and synchronous deterministic cellular automata and implement continuously active Boolean logic circuits. We introduce three new techniques for enforcing synchronization within local regions, each with a different trade-off in spatial and chemical complexity. We also demonstrate that surface CRNs can manufacture complex spatial patterns from simple initial conditions and implement interesting swarm robotic behaviours using simple local rules. Throughout all example constructions of surface CRNs, we highlight the trade-off between the ability to precisely place molecules and the ability to precisely control molecular interactions. Finally, we provide a Python simulator for surface CRNs with an easy-to-use web interface, so that readers may follow along with our examples or create their own surface CRN designs.more » « less
-
Information technologies enable programmers and engineers to design and synthesize systems of startling complexity that nonetheless behave as intended. This mastery of complexity is made possible by a hierarchy of formal abstractions that span from high-level programming languages down to low-level implementation specifications, with rigorous connections between the levels. DNA nanotechnology presents us with a new molecular information technology whose potential has not yet been fully unlocked in this way. Developing an effective hierarchy of abstractions may be critical for increasing the complexity of programmable DNA systems. Here, we build on prior practice to provide a new formalization of ‘domain-level’ representations of DNA strand displacement systems that has a natural connection to nucleic acid biophysics while still being suitable for formal analysis. Enumeration of unimolecular and bimolecular reactions provides a semantics for programmable molecular interactions, with kinetics given by an approximate biophysical model. Reaction condensation provides a tractable simplification of the detailed reactions that respects overall kinetic properties. The applicability and accuracy of the model is evaluated across a wide range of engineered DNA strand displacement systems. Thus, our work can serve as an interface between lower-level DNA models that operate at the nucleotide sequence level, and high-level chemical reaction network models that operate at the level of interactions between abstract species.more » « less
-
Artificially designed molecular systems with programmable behaviors have become a valuable tool in chemistry, biology, material science, and medicine. Although information processing in biological regulatory pathways is remarkably robust to error, it remains a challenge to design molecular systems that are similarly robust. With functionality determined entirely by secondary structure of DNA, strand displacement has emerged as a uniquely versatile building block for cell-free biochemical networks. Here, we experimentally investigate a design principle to reduce undesired triggering in the absence of input (leak), a side reaction that critically reduces sensitivity and disrupts the behavior of strand displacement cascades. Inspired by error correction methods exploiting redundancy in electrical engineering, we ensure a higher-energy penalty to leak via logical redundancy. Our design strategy is, in principle, capable of reducing leak to arbitrarily low levels, and we experimentally test two levels of leak reduction for a core “translator” component that converts a signal of one sequence into that of another. We show that the leak was not measurable in the high-redundancy scheme, even for concentrations that are up to 100 times larger than typical. Beyond a single translator, we constructed a fast and low-leak translator cascade of nine strand displacement steps and a logic OR gate circuit consisting of 10 translators, showing that our design principle can be used to effectively reduce leak in more complex chemical systems.more » « less
-
Models of nucleic acid thermal stability are calibrated to a wide range of experimental observations, and typically predict equilibrium probabilities of nucleic acid secondary structures with reasonable accuracy. By comparison, a similar calibration and evaluation of nucleic acid kinetic models to a broad range of measurements has not been attempted so far. We introduce an Arrhenius model of interacting nucleic acid kinetics that relates the activation energy of a state transition with the immediate local environment of the affected base pair. Our model can be used in stochastic simulations to estimate kinetic properties and is consistent with existing thermodynamic models. We infer parameters for our model using an ensemble Markov chain Monte Carlo (MCMC) approach on a training dataset with 320 kinetic measurements of hairpin closing and opening, helix association and dissociation, bubble closing and toehold-mediated strand exchange. Our new model surpasses the performance of the previously established Metropolis model both on the training set and on a testing set of size 56 composed of toehold-mediated 3-way strand displacement with mismatches and hairpin opening and closing rates: reaction rates are predicted to within a factor of three for 93.4% and 78.5% of reactions for the training and testing sets, respectively.more » « less