skip to main content

Search for: All records

Creators/Authors contains: "Wiseman, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present the photometric and spectroscopic evolution of the Type II supernova (SN II) SN 2017ivv (also known as ASASSN-17qp). Located in an extremely faint galaxy (Mr = −10.3 mag), SN 2017ivv shows an unprecedented evolution during the 2 yr of observations. At early times, the light curve shows a fast rise (∼6−8 d) to a peak of ${\it M}^{\rm max}_{g}= -17.84$ mag, followed by a very rapid decline of 7.94 ± 0.48 mag per 100 d in the V band. The extensive photometric coverage at late phases shows that the radioactive tail has two slopes, one steeper than that expected from the decay of 56Co (between 100more »and 350 d), and another slower (after 450 d), probably produced by an additional energy source. From the bolometric light curve, we estimated that the amount of ejected 56Ni is ∼0.059 ± 0.003 M⊙. The nebular spectra of SN 2017ivv show a remarkable transformation that allows the evolution to be split into three phases: (1) Hα strong phase (<200 d); (2) Hα weak phase (between 200 and 350 d); and (3) Hα broad phase (>500 d). We find that the nebular analysis favours a binary progenitor and an asymmetric explosion. Finally, comparing the nebular spectra of SN 2017ivv to models suggests a progenitor with a zero-age main-sequence mass of 15–17 M⊙.« less
  2. ABSTRACT Rapidly evolving transients (RETs), also termed fast blue optical transients, are a recently discovered group of astrophysical events that display rapid luminosity evolution. RETs typically rise to peak in less than 10 d and fade within 30, a time-scale unlikely to be compatible with the decay of Nickel-56 that drives conventional supernovae (SNe). Their peak luminosity spans a range of −15 < Mg < −22.5, with some events observed at redshifts greater than 1. Their evolution on fast time-scales has hindered high-quality follow-up observations, and thus their origin and explosion/emission mechanism remains unexplained. In this paper, we present the largestmore »sample of RETs to date, comprising 106 objects discovered by the Dark Energy Survey, and perform the most comprehensive analysis of RET host galaxies. Using deep-stacked photometry and emission lines from OzDES spectroscopy, we derive stellar masses and star formation rates (SFRs) for 49 host galaxies, and metallicities ([O/H]) for 37. We find that RETs explode exclusively in star-forming galaxies and are thus likely associated with massive stars. Comparing RET hosts to samples of host galaxies of other explosive transients as well as field galaxies, we find that RETs prefer galaxies with high specific SFRs (〈log (sSFR)〉 ∼ −9.6), indicating a link to young stellar populations, similar to stripped-envelope SNe. RET hosts appear to show a lack of chemical enrichment, their metallicities akin to long-duration gamma-ray bursts and superluminous SN host galaxies (〈12 + log (O/H)〉 ∼ 9.4). There are no clear relationships between mass or SFR of the host galaxies and the peak magnitudes or decline rates of the transients themselves.« less
  3. ABSTRACT The 5-yr Dark Energy Survey Supernova Programme (DES-SN) is one of the largest and deepest transient surveys to date in terms of volume and number of supernovae. Identifying and characterizing the host galaxies of transients plays a key role in their classification, the study of their formation mechanisms, and the cosmological analyses. To derive accurate host galaxy properties, we create depth-optimized coadds using single-epoch DES-SN images that are selected based on sky and atmospheric conditions. For each of the five DES-SN seasons, a separate coadd is made from the other four seasons such that each SN has a correspondingmore »deep coadd with no contaminating SN emission. The coadds reach limiting magnitudes of order ∼27 in g band, and have a much smaller magnitude uncertainty than the previous DES-SN host templates, particularly for faint objects. We present the resulting multiband photometry of host galaxies for samples of spectroscopically confirmed type Ia (SNe Ia), core-collapse (CCSNe), and superluminous (SLSNe) as well as rapidly evolving transients (RETs) discovered by DES-SN. We derive host galaxy stellar masses and probabilistically compare stellar-mass distributions to samples from other surveys. We find that the DES spectroscopically confirmed sample of SNe Ia selects preferentially fewer high-mass hosts at high-redshift compared to other surveys, while at low redshift the distributions are consistent. DES CCSNe and SLSNe hosts are similar to other samples, while RET hosts are unlike the hosts of any other transients, although these differences have not been disentangled from selection effects.« less
  4. ABSTRACT We present an analysis of DES17X1boj and DES16E2bjy, two peculiar transients discovered by the Dark Energy Survey (DES). They exhibit nearly identical double-peaked light curves that reach very different maximum luminosities (Mr = −15.4 and −17.9, respectively). The light-curve evolution of these events is highly atypical and has not been reported before. The transients are found in different host environments: DES17X1boj was found near the nucleus of a spiral galaxy, while DES16E2bjy is located in the outskirts of a passive red galaxy. Early photometric data are well fitted with a blackbody and the resulting moderate photospheric expansion velocities (1800more » km s−1 for DES17X1boj and 4800  km s−1 for DES16E2bjy) suggest an explosive or eruptive origin. Additionally, a feature identified as high-velocity Ca ii absorption ($v$ ≈ 9400 km s−1) in the near-peak spectrum of DES17X1boj may imply that it is a supernova. While similar light-curve evolution suggests a similar physical origin for these two transients, we are not able to identify or characterize the progenitors.« less
  5. ABSTRACT We present DES16C3cje, a low-luminosity, long-lived type II supernova (SN II) at redshift 0.0618, detected by the Dark Energy Survey (DES). DES16C3cje is a unique SN. The spectra are characterized by extremely narrow photospheric lines corresponding to very low expansion velocities of ≲1500 km s−1, and the light curve shows an initial peak that fades after 50 d before slowly rebrightening over a further 100 d to reach an absolute brightness of Mr ∼ −15.5 mag. The decline rate of the late-time light curve is then slower than that expected from the powering by radioactive decay of 56Co, but is comparable to that expected from accretionmore »power. Comparing the bolometric light curve with hydrodynamical models, we find that DES16C3cje can be explained by either (i) a low explosion energy (0.11 foe) and relatively large 56Ni production of 0.075 M⊙ from an ∼15 M⊙ red supergiant progenitor typical of other SNe II, or (ii) a relatively compact ∼40 M⊙ star, explosion energy of 1 foe, and 0.08 M⊙ of 56Ni. Both scenarios require additional energy input to explain the late-time light curve, which is consistent with fallback accretion at a rate of ∼0.5 × 10−8 M⊙ s−1.« less
  6. ABSTRACT We present improved photometric measurements for the host galaxies of 206 spectroscopically confirmed type Ia supernovae discovered by the Dark Energy Survey Supernova Program (DES-SN) and used in the first DES-SN cosmological analysis. For the DES-SN sample, when considering a 5D (z, x1, c, α, β) bias correction, we find evidence of a Hubble residual ‘mass step’, where SNe Ia in high-mass galaxies (>1010M⊙) are intrinsically more luminous (after correction) than their low-mass counterparts by $\gamma =0.040\pm 0.019$ mag. This value is larger by 0.031 mag than the value found in the first DES-SN cosmological analysis. This difference is duemore »to a combination of updated photometric measurements and improved star formation histories and is not from host-galaxy misidentification. When using a 1D (redshift-only) bias correction the inferred mass step is larger, with $\gamma =0.066\pm 0.020$ mag. The 1D−5D γ difference for DES-SN is $0.026\pm 0.009$ mag. We show that this difference is due to a strong correlation between host galaxy stellar mass and the x1 component of the 5D distance-bias correction. Including an intrinsic correlation between the observed properties of SNe Ia, stretch and colour, and stellar mass in simulated SN Ia samples, we show that a 5D fit recovers γ with −9 mmag bias compared to a +2 mmag bias for a 1D fit. This difference can explain part of the discrepancy seen in the data. Improvements in modelling correlations between galaxy properties and SN is necessary to ensure unbiased precision estimates of the dark energy equation of state as we enter the era of LSST.« less