Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements ( ) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining cold dark matter ( ) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure and . Compared to constraints from primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ( ) for the two-parameter difference. We further obtain which is lower than the measurement at the level. The combined SPT cluster, DES , and datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit on the sum of neutrino masses. Assuming a model, we constrain the dark energy equation of state parameter and when combining with primary CMB anisotropies, we recover , a difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets. Published by the American Physical Society2025
more »
« less
This content will become publicly available on April 1, 2026
Interacting dark sector within ETHOS: Cosmological constraints from SPT cluster abundance with DES and HST weak lensing data
We use galaxy cluster abundance measurements from the South Pole Telescope enhanced by multicomponent matched filter confirmation and complemented with mass information obtained using weak-lensing data from Dark Energy Survey Year 3 (DES Y3) and targeted Hubble Space Telescope observations for probing deviations from the cold dark matter paradigm. Concretely, we consider a class of dark sector models featuring interactions between dark matter (DM) and a dark radiation (DR) component within the framework of the effective theory of structure formation (ETHOS). We focus on scenarios that lead to power suppression over a wide range of scales, and thus can be tested with data sensitive to large scales, as realized, for example, for DM–DR interactions following from an unbroken non-Abelian gauge theory (interaction rate with power-law index within the ETHOS parametrization). Cluster abundance measurements are mostly sensitive to the amount of DR interacting with DM, parametrized by the ratio of DR temperature to the cosmic microwave background (CMB) temperature, . We find an upper limit at 95% credibility. When the cluster data are combined with Planck 2018 CMB data along with baryon acoustic oscillation (BAO) measurements we find , corresponding to a limit on the abundance of interacting DR that is around 3 times tighter than that from CMB + BAO data alone. We also discuss the complementarity of weak lensing informed cluster abundance studies with probes sensitive to smaller scales, explore the impact on our analysis of massive neutrinos, and comment on a slight preference for the presence of a nonzero interacting DR abundance, which enables a physical solution to the tension. Published by the American Physical Society2025
more »
« less
- PAR ID:
- 10608114
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 8
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present constraints on the gravity model using a sample of 1005 galaxy clusters in the redshift range 0.25–1.78 that have been selected through the thermal Sunyaev-Zel’dovich effect from South Pole Telescope data and subjected to optical and near-infrared confirmation with the multicomponent matched filter algorithm. We employ weak gravitational lensing mass calibration from the Dark Energy Survey Year 3 data for 688 clusters at and from the Hubble Space Telescope for 39 clusters with . Our cluster sample is a powerful probe of gravity, because this model predicts a scale-dependent enhancement in the growth of structure, which impacts the halo mass function (HMF) at cluster mass scales. To account for these modified gravity effects on the HMF, our analysis employs a semianalytical approach calibrated with numerical simulations. Combining calibrated cluster counts with primary cosmic microwave background temperature and polarization anisotropy measurements from the Planck 2018 release, we derive robust constraints on the parameter . Our results, at the 95% credible level, are the tightest current constraints on gravity from cosmological scales. This upper limit rules out -like deviations from general relativity that result in more than a enhancement of the cluster population on mass scales . Published by the American Physical Society2025more » « less
-
We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding to protons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the main injector produce and mesons, which could decay into dark-matter (DM) particles mediated via a dark photon . A convolutional neural network is trained to identify interactions of the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its imagelike reconstruction capability. In the absence of a DM signal, we provide limits at the 90% confidence level on the squared kinematic mixing parameter as a function of the dark-photon mass in the range . The limits cover previously unconstrained parameter space for the production of fermion or scalar DM particles for two benchmark models with mass ratios and 2 and for dark fine-structure constants . Published by the American Physical Society2024more » « less
-
The first observation of the decay and measurement of the branching ratio of to are presented. The and mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at in 2016–2018, corresponding to an integrated luminosity of . The branching fraction ratio is measured to be , where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the baryon mass and natural width are also presented, using the final state, where the baryon is reconstructed through the decays , , , and . Finally, the fraction of baryons produced from decays is determined. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
We consider first order cosmological phase transitions (PTs) happening at late times below standard model temperatures . The inherently stochastic nature of bubble nucleation and the finite number of bubbles associated with a late-time PT lead to superhorizon fluctuations in the PT completion time. We compute how such fluctuations eventually source curvature fluctuations with universal properties, independent of the microphysics of the PT dynamics. Using cosmic microwave background (CMB) and large scale structure measurements, we constrain the energy released in a dark-sector PT. For this constraint is stronger than both the current bound from additional neutrino species , and in some cases, even CMB-S4 projections. Future measurements of CMB spectral distortions and pulsar timing arrays will also provide competitive sensitivity for . Published by the American Physical Society2024more » « less