skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wodo, Olga"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop an active workflow for calibrating microstructure–property relationships when a large dataset of microstructures is available, but the cost associated with evaluating the properties associated is high. 
    more » « less
    Free, publicly-accessible full text available October 9, 2025
  2. Abstract Gradient porous structures (GPS) are characterized by structural variations along a specific direction, leading to enhanced mechanical and functional properties compared to homogeneous structures. This study explores the potential of mycelium, the root part of a fungus, as a biomaterial for generating GPS. During the intentional growth of mycelium, the filamentous network undergoes structural changes as the hyphae grow away from the feed substrate. Through microstructural analysis of sections obtained from the mycelium tissue, systematic variations in fiber characteristics (such as fiber radii distribution, crosslink density, network density, segment length) and pore characteristics (including pore size, number, porosity) are observed. Furthermore, the mesoscale mechanical moduli of the mycelium networks exhibit a gradual variation in local elastic modulus, with a significant change of approximately 50% across a 30 mm thick mycelium tissue. The structure-property analysis reveals a direct correlation between the local mechanical moduli and the network crosslink density of the mycelium. This study presents the potential of controlling growth conditions to generate mycelium-based GPS with desired functional properties. This approach, which is both sustainable and economically viable, expands the applications of mycelium-based GPS to include filtration membranes, bio-scaffolds, tissue regeneration platforms, and more. 
    more » « less
  3. null (Ed.)
    Surrogate models (SM) serve as a proxy to the physics- and experiment-based models to significantly lower the cost of prediction while providing high accuracy. Building an SM for additive manufacturing (AM) process suffers from high dimensionality of inputs when part geometry or tool-path is considered in addition to the high cost of generating data from either physics-based models or experiments. This paper engineers features for a surrogate model to predict the consolidation degree in the fused filament fabrication process. Our features are informed by the physics of the underlying thermal processes and capture the characteristics of the part’s geometry and the deposition process. Our model is learned from medium-size data generated using a physics-based thermal model coupled with the polymer healing theory to determine the consolidation degree. Our results demonstrate high accuracy (>90%) of consolidation degree prediction at a low computational cost (four orders of magnitude faster than the numerical model). 
    more » « less