skip to main content


Search for: All records

Creators/Authors contains: "Wohlberg, Brendt"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There has been significant recent interest in the use of deep learning for regularizing imaging inverse problems. Most work in the area has focused on regularization imposed implicitly by convolutional neural networks (CNNs) pre-trained for image reconstruction. In this work, we follow an alternative line of work based on learning explicit regularization functionals that promote preferred solutions. We develop the Explicit Learned Deep Equilibrium Regularizer (ELDER) method for learning explicit regularization functionals that minimize a mean-squared error (MSE) metric. ELDER is based on a regularization functional parameterized by a CNN and a deep equilibrium learning (DEQ) method for training the functional to be MSE-optimal at the fixed points of the reconstruction algorithm. The explicit regularizer enables ELDER to directly inherit fundamental convergence results from optimization theory. On the other hand, DEQ training enables ELDER to improve over existing explicit regularizers without prohibitive memory complexity during training. We use ELDER to train several approaches to parameterizing explicit regularizers and test their performance on three distinct imaging inverse problems. Our results show that ELDER can greatly improve the quality of explicit regularizers compared to existing methods, and show that learning explicit regularizers does not compromise performance relative to methods based on implicit regularization. 
    more » « less
  2. The plug-and-play priors (PnP) and regularization by denoising (RED) methods have become widely used for solving inverse problems by leveraging pre-trained deep denoisers as image priors. While the empirical imaging performance and the theoretical convergence properties of these algorithms have been widely investigated, their recovery properties have not previously been theoretically analyzed. We address this gap by showing how to establish theoretical recovery guarantees for PnP/RED by assuming that the solution of these methods lies near the fixed-points of a deep neural network. We also present numerical results comparing the recovery performance of PnP/RED in compressive sensing against that of recent compressive sensing algorithms based on generative models. Our numerical results suggest that PnP with a pre-trained artifact removal network provides significantly better results compared to the existing state-of-the-art methods. 
    more » « less
  3. null (Ed.)
    Regularization by denoising (RED) is a recently developed framework for solving inverse problems by integrating advanced denoisers as image priors. Recent work has shown its state-of-the-art performance when combined with pre-trained deep denoisers. However, current RED algorithms are inadequate for parallel processing on multicore systems. We address this issue by proposing a new asynchronous RED (ASYNC-RED) algorithm that enables asynchronous parallel processing of data, making it significantly faster than its serial counterparts for large-scale inverse problems. The computational complexity of ASYNC-RED is further reduced by using a random subset of measurements at every iteration. We present complete theoretical analysis of the algorithm by establishing its convergence under explicit assumptions on the data-fidelity and the denoiser. We validate ASYNC-RED on image recovery using pre-trained deep denoisers as priors. 
    more » « less