Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a wideband low-profile dual-polarized patch antenna with helical-shaped L-probe feeding (HLF) for mmWave 5G mobile device applications. Parametric studies on the HLF structure are performed to identify the optimal specifications. As a result, the optimized antenna achieves a wide bandwidth of 5.4 GHz (24.2–29.6 GHz), good isolation > 18 dB between ports, and 5.1 dBi of good peak realized gain, which is experimentally verified with a 10× upscaled antenna. In addition, various one × four phased arrays with different port configurations and beamform capabilities are designed and simulated for the peak realized gain. The designed antenna array shows a high peak realized gain of 10 dBi, high isolation of 15 dB between the ports, and a small substrate thickness of 0.048λ0 (λ0 is the wavelength of 24.25 GHz). Compared to the state-of-the-art antennas, the designed dual-polarized antenna can operate in the frequency ranges of 24.25–29.6 GHz, including n257, n258, and n261 of the 5G new radio frequency range 2.more » « lessFree, publicly-accessible full text available August 1, 2025
-
First-principles calculations were performed to calculate the electronic structures of low temperature phase (LTP) MnBi (Mn50Bi50) and substitutionally and interstitially Sn-doped MnBi [Mn50Bi25Sn25, (Mn0.5Bi0.5)66.7Sn33.3]. Brillouin function predicts the temperature dependence of saturation magnetization M(T). Sn substitution for Bi in MnBi (Mn50Bi25Sn25) changes the magnetocrystalline anisotropy constant (Ku) from −0.202 MJ/m3 (the in-plane magnetization) for LTP MnBi to 1.711 MJ/m3 (the out-of-plane magnetization). In comparison, the Ku remains negative but slightly decreases to −0.043 MJ/m3 when Sn is interstitially doped in MnBi [(Mn0.5Bi0.5)66.7Sn33.3]. The Curie temperature (TC) decreases from 716 K for LTP Mn50Bi50 to 445 K for Mn50Bi25Sn25 and 285 K for (Mn0.5Bi0.5)66.7Sn33.3. Mn50Bi25Sn25 has a lower magnetic moment of 5.034 μB/f.u. but a higher saturation magnetization of 64.2 emu/g than (Mn0.5Bi0.5)66.7Sn33.3 with a magnetic moment of 6.609 μB/f.u. and a saturation magnetization of 48.2 emu/g because the weight and volume of the substitutionally Sn-doped MnBi are smaller than the interstitially Sn-doped MnBi. The low Curie temperature and magnetization for Sn-doped MnBi are attributed to the high concentration of Sn. Thus, future study needs to focus on low Sn-concentrated MnBi.more » « less
-
This paper discusses the challenges faced by electric power systems due to the increasing use of inverter-based renewable energy resources (IBRs) operating in grid-following mode (GFL) and the limited support they provide for the grid’s reliability and stability. With increased IBRs connected to the grid, electric utilities are increasingly requiring IBRs to behave like traditional grid-forming (GFM) synchronous generators to provide support for inertia, frequency, voltage, black start capability, and more. The paper focuses on developing GFM inverter technologies with L, LC, and LCL filters and investigates the performance of combined GFM and GFL inverters with different filtering mechanisms when supplying different types of loads. It also emphasizes achieving voltage controllability at the point of common coupling of the GFM with the rest of an AC system. EMT simulation is utilized to investigate the interaction of combined GFM and GFL inverters with different filtering mechanisms. The research results will assist electric utilities in ensuring the reliability and stability of electric power systems in the future.more » « less
-
With the proliferation of large-scale grid-connected wind farms, subsynchronous oscillation (SSO) incidents associated with Type-4 wind turbines (WTs) with a permanent magnet synchronous generator (PMSG) have occurred frequently. These incidents have caused severe reliability risks to the power grid. Conventionally, P-Q capability charts are utilized to ensure the safety operating region of a synchronous generator. However, a PMSG WT exhibits completely different and dynamic P-Q capability characteristics due to the difference in energy conversion technique and several critical factors related to the WT power converters. This paper presents a comprehensive dynamic P-Q capability study of a PMSG WT with sufficient and accurate considerations of the WT control and operation in the dq reference frame, its power converter constraints, and grid dynamics. Models of a PMSG WT are first developed based on its control principle in the dq reference frame. Then, algorithms for obtaining the P-Q capability charts of the WT are developed with the considerations of complete WT constraints in different aspects. The study analyzes the root cause of many abnormal operations of grid-connected PMSG WTs, reported in the literature, from the dynamic P-Q capability perspectives. The proposed study is verified via an electromagnetic transient (EMT) model of a grid-connected Type-4 WT.more » « less
-
Spoke-type PMSMs were designed with commercial permanent magnets and theoretically designed hexaferrite: Nd-Fe-B (NdFe35, G1NH), Alnico (8B, 8H, 9), and La-CoSrM hexaferrite (NMF-15G). It was found that coercivity (Hc) plays a crucial role in determining motor performance. The ANSYS Maxwell software was used to characterize the designed motor performance. Commercial RE-free Alnico 9 holds a 10.5 MGOe of (BH)max, much higher than a 5.5 MGOe of RE-free Alnico 8B/8H and SrM (SrFe12O19) hexaferrite magnets. However, the Alnico 9 motor performance is not better than the other Alnico 8B/8H and hexaferrite motors. The spoke-type PMSM with our theoretically designed SrM hexaferrite simulated motor performance. A motor performs best when the Hc/Br ratio equals one with a high Hc. For instance, the motor torque and peak power increase to 189 Nm and 178 kW, respectively, as the Hc increases to 4.86 kOe from 2.43 kOe. However, the motor performance is not significantly changed with a fixed Hc and various Br. It was found that regardless of (BH)max, coercivity (Hc) plays a dominant role in motor performance.more » « less
-
The effects of various branches geometry and dimensions such as length, thickness, and width for H-, U-, O-, YH- and YU-shaped alnico structures on coercivity ( H ci ) using micromagnetic simulation for coherent rotation and curling modes are investigated. The simulation results suggest that the H-shaped structure needs long and short branch length for the coherent rotation and curling, respectively, regardless of branch thickness and width to realize high H ci . Short branch length with thin thickness and short width are recommended for both rotations for the U- and O-shaped structures. Lastly, both Y-shaped structures need branch with long length, thin thickness, and mid-long width for the coherent rotation, but short width for the YH-shaped and mid-long width for the YU-shaped regardless of length and thickness for curling are desired. Furthermore, among the five studied structures, H- or YH-shaped structure for coherent rotation and O-shaped structure for curling are highly recommended for fabrication to realize a high H ci .more » « less